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unsteady Navier-Stokes analysis, again using velocity-vorticity variables, and an iterative solution technique with multi-grid
acceleration have been developed. The procedure is validated by applying it to the model problem of shear-driven flow in a
cavity for which experimental as well as other numerical results are available. In a parallel effort, the existing unsteady
thin-layer NS analysis and CFL3D software were modified and flow past a delta wing at high angle of attack was studied.
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For the 2-D dynamic stall phenomenon, the mechanism responsible for the leading-edge stall is finally understood.
An effective modulated suction/injection control strategy is devised to significantly delay the formation of the energetic stall
vortex. The various analyses developed have provided further insight into the dynamic stall phenomenon, additional work
is continued for 2-D flows to understand further the role of separation and, for 3-D flows, to further develop and validate the
analysis for rectangular and delta wings.

4k



8y
Ohtl ibution I

ABSTRACT A
Dist I A, t S~i/or

A two-and-a-quarter-year multi-tasked research project was pursued- p--esent

investigators to study dynamic stall phenomenon under AFOSR sponsorship between

February 1990 - May 1992.

The major objective of this study was to predict and control the dynamic stall

phenomenon in 2-D and 3-D flows. In the process of achieving these objectives, signifi-

cant effort was directed towards developing mathematical models and the correspond-

ing computational methods which were made available to interested researchers and

organizations involved in computational fluid dynamics (CFD) research. The analy-

ses developed included a two-dimensional Navier-Stokes (NS) analysis for a general

body undergoing arbitrary three-degree-of-freedom maneuvers; detailed results are

provided for this class of flows. For enhancement of accuracy and efficiency, an

adaptive-grid time-accurate flow solution Lechnique has been developed to enable im-

proved resolution of the various length scales in a vortex-dominated unsteady flow.

A multi-block grid generation analysis is developed for a 3-D rectangular planform

wing. For the corresponding flow analysis using velocity-vorticity variables and direct-

solution philosophy, the difficulties experienced were clearly discussed in the annual

report submitted a year ago in November 1991. This 3-D flow analysis was there-

fore temporarily set aside. It will be pursued further in a subsequent grant, and the

progress made on it will be reported in a forthcoming annual report for that sianL,

In the current grant, the study of 3-D flows was continued, using an iterative solution

methodology. Hence, a 3-D unsteady Navier-Stokes analysis, again using velocity-

vorticity variables, and an iterative solution technique with multi-grid acceleration

have been developed. The procedure is validated by applying it to the model proh-

lem of shear-driven flow in a ,,,!ity for which experimental as well as other numerical

results are available. In a parallel effort, the existing unsteady thin-layer NS analysis

and CFL3D software were modified and flow past a delta wing at high angle of attack

was studied. This is reported separately in a M.S. Thesis that has been completed



on this work.

For the 2-D dynamic stall phenomenon, the mechanism responsible for the leading-

edge stall is finally understood. An effective modulated suction/injection control

strategy is devised to significantly delay the formation of the energetic stall vortex.

The various analyses developed have provided further insight into the dynamic stall

phenomenon; additional work is continued for 2-D flows to understand further the

role of separation and, for 3-D flows, to further develop and validate the analysis for

rectangular and delta wings.
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Section 1

OBJECTIVES

An analytical-numerical study was pursued by the present investigators under AF-

SOR sponsorship during February 1990 - May 1992. The primary objectives were:

(i) To characterize the unsteady separation accompanying dynamic stall of an airfoil

in constant-pitch-rate motion; (ii) To develop a flow-control strategy to optimize the

instantanccus maximum lift and the sustained lift; (iii) To develop 3-D unsteady flow

simulation capability to examine flow past a rectangular planform wing as well as a

aelta wing. In connection with the last primary objective, the secondary objectives of

the development of a three-dimensional unsteady Navier-Stokes analysis using itera-

tive schemes, as well as computational efficiency and management and post-processing

of large data bases become very significant.

A multi-tasked research effort was undertaken to achieve these objectives. A phys-

icallv consistent 2-D unsteady flow analysis for maneuvering airfoils is developed in

theory and direct-simulation code, using the concept of circulation in a vorticity-based

formulation. An unsteady flow-control strategy is developed for effective management

of the associated lift. The analysis formulated for studying 3-D unsteady flow is also

based on vorticity and velocity, but uses an iterative technique. In addition, to ac-

celerate convergence, an efficient multi-grid algorithm is developed for the velocity

problem emerging from this formulation. The issue of efficiency, at least for 2-D flows,

is further addressed by developing a temporally adapting grid in which the adaption

is based on the evolving flow solution. This adaptive grid technique has the potential

to resolve very fine scales that are critical in the study of dynamic stall.

The significant accomplishments made toward achieving the above-stated objec-

tives are briefly described next.



Section 2

DESCRIPTION OF
SIGNIFICANT
ACCOMPLISHMENTS

All of the areas of research pursued and the progress, as well as the specific achieve-

ments, made in these studies during the 27-month grant period are briefly summarized

in the following sections.

2.A 2-D Dynamic Stall and Its Control

2.A.1 Introduction

The realization of supermaneuverable flight necessitates the use of unsteady non-

equilibrium flow analyses and examination of a more comprenensive parameter en-

velope which can capture significant time-dependent effects. The numerous complex

flow phenomena and interactions which might occur during a supermaneuver in the

high-alpha (generally between 30° and 90') flight regime are highly nonliv,!ar pri-

marily due to flow separation, presence of vortex dominated flows and unsteadiness.

As a consequence, there is a strong coupling between the prevailing aerodynamics

and flight dynamics, sometimes leading to chaotic flow and loss of control of the air-

craft due to tail spin. To improve the maneuverability of high-performance military

aircraft at very high angle of attack, researchers are currently leveloping analytical

and experimental design tools that can take full advantage of unsteady aerodynam-

ics. When achieved by operating in the post-stall flight regime, supermaneuverability

permits improved combat capability.

The initiation of a high-alpha maneuver may involve large-amplitude deflections
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of control surfaces or rapid pitch-up motions of the lifting surface itself. During this

post-stall maneuver, instead of experiencing massive flow separation and the result-

ing loss of lift, the lifting surface develops an energetic dynamic-stall vortex, which

temporarily leads to a significant increase in lift and drag forces. Thus, during the

time that the dynamic-stall vortex is created on the suction surface and convects

over it, the flow field is characterized by a number of dominant flow features which

include growth of boundary layer, separation, unsteadiness, primary and secondary

shear layer instability, unsteady separation, shock/boundary-layer and inviscid-viscid

interactions, and vortex-vortex and vortex-surface interactions. Thus, the dynamic

stall event is richly endowed with many basic fluid mechanics phenomena. The un-

derstanding and control of this event is important not only for supermaneuverable

aircrafts, but also for helicopter rotor blades, compressor blades, wind turbines, etc.

Towards the development of a supermaneuverable flight capability, Lang and Fran-

cis (1985) had articulated many of the research problems that are currently being

pursued by researchers. Many of the coi -pts discussed by them are now being

tested in the first international X-plane, namely, the X-31, known officially as the

Enhanced Flight Maneuverability Demonstrator; see Lerner (1991). This is the first

aircraft which has successfully maneuvered in the post-stall regime, thereby making

this liability an asset. Thus, any insight gained in understanding the dynamics of

the post-stall regime could be very valuable in improving the performance and flight

envelope of this type of aircraft.

Since April 1990, there have been three major workshops/conferences, where the

research issues as well as the results of the studies in the area of post-stall maneuvers

have been discussed. References [A.2, A.6 and A.16] provide sources where current

work is published and the reader would benefit immensely from them. In light of

these references, together with recent excellent review articles by Carr (1985), Helin

(1989) and Visbal (1990), it is decided to not include a review of the literature in the

present paper.

The present authors have been studying forced ,,nsteady separated flows, using

the NACA 0015 airfoil for some time. Specifically, K. Chia, Osswald and U. Ghia

(1990) provided, for very low Re, results that very vividly showed four stages, as

classified by Walker (1992), that describe the dynamic stall event. These are:
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i. triggering phase, in which flow separation occurs near the leading edge (LE)

on the suction surface due to adverse pressure gradient;

ii. separation, in which vorticity accumulates in the surface layer and the onset

of interaction with the outer fluid is about to occur;

iii. strong interaction, in which a vorticity plane erupts; and finally,

iv. inviscid interaction phase, in which the dynamic-stall vortex is formed due

to roll-up of the free shear layer, which entrains fluid from the boundary layer.

The details of the analysis were given by Osswald, K. Ghia and U. Ghia (1990).

Subsequently, K. Ghia, Yang, Osswald and U. Ghia (1991) provided the results for

higher-Re flows by treating the nonlinear convection terms using a third-order accu-

rate biased upwind differencing scheme, while still retaining the central differencing

scheme for all other spatial derivatives. Thereafter, K. Ghia, Yang, Osswald and

U. Ghia (1992) demonstrated the suppression of the dynamic-stall vortex using an

active control strategy of suction/injection. In addition, K. Ghia, Yang, U. Ghia and

Osswald (1992) successfully studied the dynamic-stall phenomenon using a modified

NACA 0012 airfoil undergoing sinusoidal oscillations. The primary objective in that

investigation was to simulate and analyze the Grand Challenge Problem posed by

Carr (1990). The experimental data for this problem was that of McAllister and

Carr (1979). Further, Osswald, K. Chia and U. Ghia (1992) extended the analysis to

provide a more accurate far-field boundary condition, which required the coupling of

viscous circulation F(t) with the original analysis of the authors, Ref. [A.13], which

used (plV/D), thereby arriving at a (pt, b,(t)) formulation. In addition, some

results were provided for Re = 45,000 with constant pitch-rate 6+ = 0.2, and Re

52000 with 6+ = 0.072.

The primary objective of the present study is to extend the analysis of K. Ghia,

Yang, Osswald and U. Ghia (1992) to provide an accurate far-field boundary condition

b~' correctly implementing the prevailing viscous circulation there. Although this

analysis parallels that of Osswald, K. Ghia and U. Ghia (1992), it has some significant

differences in the way .ne mathematical formulation is set up and particularly in the

details of the numerical procedure. In addition, it is also the goal of this study to

analyze the simulation results more fully in light of the available experimental data

or numerical results, so as to assess the overall 2-D (451 , zkf, 1(t)) formulation, where

1(t) is the viscous circulation at infinity.
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2.A.2 Mathematical Fcrmulation

The time-dependent flow around a maneuvering airfoil is governed by the unsteady

Navier-Stokes (NS) equations. The selection of the specific forms of these nonlinear

coupled, partial differential equations used in the present work is based primarily on

two factors, namely, (i) dependent variables, and (ii) reference frame.

On the Choice of Dependent Variables

K. Ghia, Hankey and Hodge (1977) used a regular grid and solved the primitive-

variable form of the NS equations in which the continuity equation was satisfied using

the Poisson equation for pressure. Osswald (1981) examined various 2-D formulations

of the NS equations and concluded that the 2-D primitive-variable formulation, with

Poisson equation for pressure, should be discretized using a staggered grid, rather

than a regular grid, if the discrete equations are to be exactly consistent with the

continuous equations. U. Ghia and K. Ghia (1987) had reviewed various NS analyses

for 3-D flows; their study included:

i. velocity-pressure (V,p),

ii. velocity-vorticity (V, c) and

iii. vector-potential-vorticity (A, ;) formulations.

Osswald, K. Ghia and U. Ghia (1987) clarified further that, although primitive-

variable formulations are widely used due to their popularity in compressible-flow

analyses, the velocity-vorticity formulation is equally competitive and perhaps more

advantageous because it directly provides the vorticity which is the most relevant

quantity in the flow. In addition, it was pointed out that the (V,cD) formulation

leads to a natural decoupling of the governing equations, since the spin dynamics of

a fluid particle governed by the vorticity-transport problem can be decoupled from

the translational kinematics of the fluid particle represented by the elliptic velocity

problem. This is not the case for the primitive-variable formulation. It was also

pointed out that a careful analysis of the (',c) formulation could reduce its com-

putational requirements to match those of the (V,p) formulation. Finally, it was

pointed out that the vector-potential-vorticity formulation required specification of a

non-physical boundary condition to correctly set up the problem and that this poses

numerical difficulties. Htiang, U. Ghia and K. Ghia (1992) have revisited this issue

and have provided some additional details. Gatski (1991) as well as Gresho (1991)
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have also reviewed the various NS formulations and have provided some insight into

the selection process for the dependent variables.

On the selection of Reference Frame

Even for maneuvering bodies, it is possible to work with an inertial reference frame,

with boundary-aligned coordinates being computed at every instant of time to provide

for the body motion. Chyu (1981) as well as Salari and Roache (1990) have provided

analyses using an inertial reference frame. The major advantage with this approach

is that the far-field boundary conditions remain undisturbed. On the other hand,

Mehta (1977), Sankar and Tassa (1980), Visbal and Shang (1989) and the present

authors have elected to work with the body-fixed non-inertial reference frame. In this

approach, although the grid remains undistorted, the far-field boundary conditions

require special attention. In the present study of 2-D forced unsteady separated flow,

the (f/, CD) formulation is used in generalized coordinates in the body-fixed non-inertial

reference frame. Osswald, K. Ghia and U. Ghia (1990) have shown that, for the

(V,Ci) formulation with divergence and curl operators expressed in the generalized-

coordinate non-inertial reference frame, the inertial vorticity diffuses as for the case

of a fixed body, but advects with apparent velocity rather than with inertial velocity.

Thus, except for the appearance of the apparent velocity, the velocity-vorticity for-

mulation of the unsteady NS equations is "nearly" form-invariant under a generalized

non-inertial coordinate transformation. This offers a significant advantage, in that it

leads to a unified algorithm for both non-maneuvering and maneuvering body flows.

Thus, in the present study for 2-D flow past a maneuvering body, the (Pb, Ci) formula-

tion is used in a body-fixed non-inertial reference frame. This form has been shown

by Osswald, K. Ghia, and U. Ghia (1988) to be equivalent to the (V, C) formulation,

but it is computationally more efficient. Speziale (1987) had also shown that, for

the special case of rotation, the (V,&) formulation is form-invariant and that, under

this condition, non-inertial effects will enter the solution only through the initial and

boundary conditions.

Governing Differential Equations

An arbitrary maneuver can be completely defined by specifying the trajectory fB1/(t)

of some point B fixed on the body, (see Fig. A.1), with respect to an inertial observer,

together with the specification of the instantaneous angular velocity !lB(t) of the body.
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Kinematically, the translational velocity of the origin B of the body-fixed frame is then

VB/I(t) = d(FB/I)idt, and the translational acceleration is aB/I(t) = d2(FB/)/dt2,

while the angular acceleration is &B(t) = d(nB)/dt. In the present analysis, these

functions, which define a specific maneuver, are assumed to be explicitly prescribed

functions of time, and will be given in a later sub-section.

For an inertial reference frame, the unsteady incompressible Navier-Stokes equa-

tions are given in terms of the derived variables ( Vj•,•j ) as

Continuity Equation and Kinematic Definition of Vorticity:

V, . V = 0, (A. 1)

V = V(A.2)

Vorticity-Transport Equation:

0t-T + V, X (Dt X f/1) + T-• (Vt x Vt x C) = 0, (A.3)

Ot Re

where Re = such that U, is the reference free-stream velocity and c is the airfoil

chord length. Also, the subscript I on Vr denotes that the implied spatial differen-

tiation is with respect to inertial coordinates. The transformation of Eqs. (A.1-A.3)

to a generalized coordinate non-inertial body-fixed reference frame, as carried out by

Osswald, K. Ghia and U. Ghia (1990), leads to the following form:

Continuity Equation and Kinematic Definition of Vorticity:

V. 0 , (A.4)

V' X Vi = a (A.5)

Vorticity-Transport Equation:

-+ V x (t x f/) + T(V x V x LD) = 0, (A.6)

at Re

where all divergence and curl operators are with respect to the generalized-coordinate

non-inertial reference frame, the apparent velocity IV is kinematically related to the

inertial velocity as

V = V/ - VB/'(t) - QBM(t) x •, (A.7)
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and the position vector f is given as

F = fl- i8Bl(t) (A.8)

with VB/I(t),fIB(t),fB/t(t) being the known functions which define a specific ma-

neuver.

Hence, except for the appearance of the apparent velocity, the velocity-vorticity

formulation of the unsteady Navier-Stokes equations is form-invariant under a gen-

eralized non-inertial coordinate formulation. Therefore, the algorithm developed to

solve Eqs. (A.1-A.3) remains valid for the solution of Eqs. (A.4-A.6). The analysis

described so far is valid for 3-D flows with six-degree-of-freedom maneuvers.

For the 2-D simulations of interest here, it is computationally more efficient to use

the (0,&) variables rather than the (V,,) variables. Further, due to the unbounded

nature of the stream function in the far field at true infinity, it is essential that a

deviational stream function be employed as the dependent variable; this is given as

01= Y - YB/I(t) I +? ODI ý2 t) + !~t) In (r) (A.9)

where y - yB/I(t) is the vertical inertial coordinate passing through the instantaneous

location of the pitching axis. The viscous circulation 1(t) is positive in the clockwise

direction and 'a' is the radius of the circle to which the airfoil is transformed. The

inertial velocity then becomes

V, +[Rea1(V*EI) + 1~f 90 ]ý+ Real(V 2  12 (A. 10)
1• = i + L gii +v/,2 j- e a L g22 -F 0 J e2  (A.lO)

Here, V' is the complex velocity defined as ir-). due to the generation of circulation,

and Z is the unit base vector of the inertial Cartesian reference frame shown in Fig.

A.1. Further, E, and j 2 are the covariant base vectors of the generalized-coordinate

(C1, ý2) non-inertial body-fixed reference frame. The determinant of the metric tensor

g appearing in Eq. (A.10) is given as

g = (g 1 1g2 2 - g12g21 )

where

_ j (A.ll)
k=1

The independent variables (x', X2) represent the body-fixed Cartesian coordinates

whose unit base vectors are il and i2 as shown in Fig. A.l.
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In light of Eqs.(A.7) and (A.10), the contravariant components of the apparent ve-

locity are

Vr ,V -{COS 08(t) - VBA, 1(t) + X'fla(t))al .61+

{sin B(t) - VBA1 (t) - '90)16 - El + Real(V'Ei)] + -•- (A.12)

and

Vrgv 2  =-VA, 1(t) + X2 ~l~)EI 2 +
-/[{coseB(t)- B QB(t}.i

{sin OB(t) - VB2/ 1(t) - r'Bti - E2 + ReaL(V*Z2)J - (A.13)

where [-0B(t)J= a1 (t) is the instantaneous pitch angle of the airfoil and

VB/l(t) = l'B11 (t)81 +±//~~2

y Navier-Stokes equations in generalized orthogonal non-inertial
(od-iecoriaesakke thee following for I .

Stream Function Equation:

Vorticity Transport Equation:

Vg-'J +0 U-'1V-VJ)+ a (Wi[Vy-Wv])

1 f (g92 2 8W[\ 8u,_ (A. 15)

In Eqs. (A.14) and (A.15), the elliptic problem for the deviational stream function is

coupled with the temporally parabolic vorticity-transport equation. The mathemati-

cal formulation can be completed by providing the boundary and intitial conditions.

However, before discussing these, the control strategy developed for this study will be

examined. The boundary and initial conditions can then be presented in their final

form.

Active Control Using Suction and Injection

From a theoretical consideration, Osswald (1992) has pointed out that the vorticity

created at the surface drives some of the unsteady flow phenomena. Thus, flow phe-
nomena such as incipient separation and subsequent development of vortical structure
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near the surface perhaps can be controlled by managing the creation of surface vortic-

ity, which is governed by the vorticity boundary condition at the surface and, hence, is

external to the governing equation. Thus, modulated suction/injection(MSI) control

is developed. The active control model developed is based on the principal objective

of delaying the unsteady separation to suppress the formation of the dynamic-stall

vortex. A secondary goal is to increase the lift and reduce drag. In additition to these

objectives, the constraints used in developing the active control model are that

i. the maximum non-dimensionalized main flow rate be atmost 1%,

ii. the net mass addition be zero and, finally,

iii. the control model for MSI be as simple as possible.

Constraint (ii) is not critical; however, if employed, it allows the downstream

boundary condition for the basic flow without MSI to remain valid for the flow even

with the implementation of active control.

The active control model depends on a large number of variables, some of which

are location, magnitude, suction/injection rate, duration, etc. A careful numerical

optimization led to a trapezoidal profile for the MSI velocity, with the key parameters

being depicted in Fig. A.22. In the present study, the suction velocity is taken to

be between 3.5% and 4.5% of the free-stream velocity, and is applied on the upper

surface of the airfoil over approximately 9% of the chord starting from the leading edge

(LE). The physical injection velocity is slightly smaller in magnitude as compared to

the physical suction velocity. It should also be pointed out that the segment of the

airfoil surface in the computational plane over which suction is applied is the same as

that over which injection is applied. Then, to satisfy the constraint of zero net mass

addition, injection is applied over 14% of the chord on the lower surface near the

trailing edge (TE) of the airfoil. In fact, the constraint can be expressed as follows.

In the physical plane, for suction applied over the upper surface near the LE segment

(a-b), and injection over the lower surface near the TE segment (c-d), zero net mass

addition requires

(f/-. j 2)dl ,S,,. + 1 ( 2)dl -,,,.= 0, (A.16)

where the apparent velocity f/ on the surface can be written as

/" = ý T( , ,t)i +IV (ýI, , t) = T(,,)- e ( ,t)- . (A7)

10



In the non-inertial reference frame of the generalized-coordinates (•',Q), Eq. (A.16)

is given as
f vfN(ý, ,t) d• 0 O. (A. 18)

t'nP

where ý4 represents the non-porous segments of the airfoil surface in the computa-

tional plane.

Boundary Conditions

Using Eqs. (A.12) and (A.13), the apparent velocity V can be expressed as

[CO =B [cGt) _ V, 1 /I(t) -X2l SI(t)j ý, +[tsin 0,B(t) - yB1I(t + X'iQB(t)] 82

+[Rea1(V'Ei) + &I{ 1Vr ý [Reat(VNF2 ) 1 abj' E21 A-9
+tgu, + [ g • 0Q 2. (A.19)

From Eqs.(A.17) and (A.19),
g22  1 ibody= [{cosOB(t) - VB'1 (t) + X'2 1B(t)}eI +

v/aF

{sinOB(t) - V/211(t) - X'f1B(t)}62 1 ]"

+Real(V' 2 )(- l 2, t) (A.20)

Eq. (A.20) leads to the boundary condition for the stream function at the surface as

OD (ý 1,,,,t) = {X 2[VA/t(t) - cos OB(t)] - X'[VB/1(t) - sinOB(t)]
Q2(t') [( 1)2 + (X2)2]1}- F(t) In ( r)2

- j /J N(•', ,t)d', (A.21)

where ý represents the non-porous segments of the body surface. Now, the surface

vorticity can be evaluated from the following equation:

W' Ibody= ( ~ /&1)2 - /a2 Ibd (A.22)

subject to the constraint of zero slip, which leads to

-- obod°= -[{cosOB(t) - V, 11(t) + X'QB(t)}WI +

{sinOt)/t ( - t) - X B(t)}E2]• E

-Real(V'E,) + vjjT($, ,,t). (A.23)

Eq. (A.20) is also used in the evaluation of Eq. (A.22). The corresponding condition

in the far field can be written as
OD 0, (A.24)
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0. (A.25)

The examination of this boundary condition reveals that the viscous circulation r(t)

is still not determined; its determination is described in the next sub-section.

Viscous Circulation and Necessary Condition for Its Determination

The inviscid circulation ri,F(t) is given as

;,,(t) -- 4ra sin a1 (t) (A.26)

where 'a' is the radius of circle to which the airfoil is transformed(see Fig. A.3(d, e))

and a1 is the flow angle at the given instant of time. The circulation F(t) for the

overall viscous flow is related to the inertial velocity IV as

r(t) = V di-- - f Vr. di, (A.27)

taken around a circle Co with its radius equal to infinity. The use of the Stokes'

theorem leads to

F(t) = -j(V x A).ids = -j &t.iids, (A.28)

where S0 is the corresponding area of the entire flow domain whose boundary curve

is Ce,. Even with this condition, the stream-function and vorticity equations, Eqs.

(A.14-A.15), still constitute a singular system of equations due to the linear depen-

dence amongst these equations. This led to imposing the condition that the pressure

in the multiply-connected flow domain be single valued and continuous along the

body surface, i.e.,

. (Vp) . d! = 0. (A.29)
•Jod~t

For flow past a square cylinder in a channel, again a multiply-connected domain,

Matlda, Kuwahara and Takami (1975) had used Eq. (A.29) to close the equation set

for their internal flow problem. This has provided the impetus to use this equation

in the present analysis also. Indeed, Eq. (A.29) is used in the present analysis

and serves to close the equation set. This condition is an alternative statement of

the Kutta condition for viscous unsteady flow, namely, that the pressure at the TE

has to be continuous and single valued. Osswald, K. Ghia and U. Ghia (1992) have

pointed out that the only influence that pressure has on an incompressible flow is that

it controls the creation and distribution of surface vorticity. Further, this condition

helps to close the problem thereby implying that advanced wall vorticity can now be

accurately determined. Next, the initial conditions used in the present analysis are

discussed.
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Initial Conditions

To determine the flow field past a maneuvering body, initially the simulation of the

flow past a stationary airfoil at fixed angle of attack is carried out. For this latter

stationary configuration, the motion is started impulsively from rest at t=0 and 'he

corresponding inviscid soluton is used as the initial condition. The viscous flow past

a stationary body at a given angle of attack is determined. Next, up to an asymptotic

time, i = T, the maneuvering motion is inititated at t = T and the viscous circulation

at the start is taken as

r(t) jt=o= ro(T) (A.30)

where lirli...T 1(t) = Fo,(T) is the asymptotic value of the circulation computed by

a,ccounting for the aagular acceleration &B/t(t) due to manuevering motion in the

value of the circulation around a stationary airfoil.

Pressure and Force Coefficients

The analysis to be discussed here follows the development provided by Yang (1992).

In the present (wjt ;, F(t)) formulation, pressure does not appear and, as such, to

determine pressure, it is necessary to revert back to the linear-momentum equation

given as

at + V = -7 .P + Lý1(A.31)

The pressure field in the in.compressible flow can be evaluated accurately using the

pressure Poisson equation obtained by tak~ng the divergence of the linear-momentum

equation, Eq. (A.31). If, on the other hand, only surface pressure is desired, it can be

determined more readily by carefully evaluating Eq. (A.31), along the surface; this

leads to

O(p + q) t)

Tangential Acceleration
due to circulation control
along the body surface
+ v' N( ',1 gYI IOW

+ _'_-.-1 N_ IOwl Re __g_0 (A.32)

Pressure gradient due to
mass transfer along the
body surface as a result
of MSI
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where

q =~ T2(, j, ) N2 ~' ~,t) +aB11 (t)x' + a'B11(t)z 2 - - {(XY) + (.r2)2} Q2()

Addition of kinetic energy due to
MSI

(A.33)

For evaluation of the terms involving apparent velocity on the surface, not all terms

are zero and, for some additional details, see Yang (1992). Careful examination

of Eq. (A.32) reveals that the temporal increase of the tangential control velocity

can accelerate the flow, since 3 < 0 and, for suction with N(ý',•,t) < 0, as

implemented in the unsteady separation region where w, > 0, VggT'N(ý',•,, t)w will

also produce favcrable pressure gradient and will lead to reduction in the boundary

layer thickness. Thus, integrating Eq. (A.32) leads to

p I{`E= -q [!TEG + 'I }TNý )jt-V-
- (&BI(t) X f) j1 + di'. (A.34)

J IRe Vq/ Gk2

This then permits the determination of the surface pressure.

The force and moment coefficients as well as the surface force due to viscosity are

now calculated using the surface pressire from Eq. (A.34), and the definition of the

coefficient of pressure as

P I 2p, (A .35)

ipb00

where p" is the dimensional pressure.

Further, the force coefficient COF. is defined as

FCf, pU b' (A.36)

where the spanwise length b is taken as unity.

Substituting Eq. (A.34) into Eq. (A.35), Eq. (A.36) is then written as

\1g 11 CpJ } (A-37)

Similarly, the net dimensional force P, due to viscosity is given as

2p- [( + V -~ids4 , (A.38)
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where AO is the dynamic viscosity and I is the identity tensor.

The coefficient of the viscous shear force is defined as

CF.- =a U cd (A.39)

Use of the expression for apparent velocity, Eq. (A.7), permits Eq. (A.39) to be

expressed as

2eo +(v) s. (A.40)

For flows with MSI, an expression for Eq. (A.40) can be obtaiaed in non-inertial

body-fixed generalized coordinates (•t,2) as

__9V 3~ av~ (9
OF. jf { +e - + - E' E <, (A.41)

where Z' and 02 are the contravariant base vectors of the generalized coordinates
(•, ). In addition, by defining

-- = Alt 1 + A2
E2  and 19V B'ýj + B2•, (A.42)

Eq. (A.41) can be rewritten as

CFý v=2A + jIg 1(~ 2V B') ýj+ 2 Vr'1B2E2 }d'. (A.43)

Along the non-porus body surface, Eq. (A.41) is simplified to give

2 {/g-11 (Vj)'Ei}dj" (A.4t4)¢( 0

A similar analysis leads to the moment coefficients CM, and C'M. as

OM~ = d 2Ic i' '(ýl X ý2) + X22 Xk e2 ,< (A.43)

and

= ~ ~ ~ ~ 1ý X + /ýI' x( 1x) + X2(ý2 X I

4-A Vg" [v B2 z'(ýl X ý) + di'2 2]<1(.46

For non-porus body surface,

2 [ , , x + >, x d, (A.47)
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To calculate the lift and drag coefficients from CF, and CF,, it is convenient to define

the force vector P as a complex variable such that

F = Real(f)lt + fmag(F)&-2, (A.48)

With this definition in Eq. (A.44), as shown in Fig. A.2, the lift and drag coefficients

become

CLP = Imag(CF,) x cos B(t) - Ren l(CF,) x sin 0B(t),

CoD = ReaI(OF,) x cos 0B(t) + Imag(C×P) X sin OB(t),

CL, = mrnag(CF,) X COSOB(t) - Real(F.,) X sin OB(t),

CD. = Real(CF,) x cos OB(t) + Imag(CF.) x sin O0(t). (A.49)

Further,

CL = CL, + CL., (A.50)

CD =CD, + CD,, (A.51)

CM - C'P + CM,. (A.52)

2.A.3 Analytical Grid Generation Technique

The mathematical problem formulated in Section A.2 is governed by a set of partial

differential equations which can be solved efficiently using an advanced numerical

technique. The overall solution technique will require a carefully generated grid that

satisfies numerous criteria as far as quality of the grid is concerned. The grid should

also provide the resolution of dominant length scales in the various critical regions

that evolve in the flow field. The use of appropriate grid topology with a given

mathematical formulation is also critical, since certain Navier-Stokes operators may

turn out to be singular on a specific grid topology. The generalized Schwarz-Christoffel

grid generation technique originally described by Davis (1979) and further developed

by Osswald, K. Chia and U. Ghia (1989) for flow past an arbitrary airfoil is used in

this study.

Conformal Transformation

The generalized mapping technique used here is conformal and provides analytic met-

ric information, guarantees orthogonality, and has the capability of handling arbitrary
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bodies with sharp corners that occur for example at TE, etc. As shown in Fig, A.3(a),

a conformal mapping from the physical z-plane permits the airfoil to be transformed

into a line segment in the upper half (-plane, as shown in Fig. A.3(b). A second

conformal transformation permits this line segment in the upper hailf -plane to be

transformed to the complex potential plane P, as shown in Fig. A.3(c). This is sub-

sequently transformed using the Joukowski transformation to a circle in the Z-plane,

as shown in Fig. A.3(d). For lifting cases at non-zero incidence a1 , the Z-plane can

be rotated by the effective angle of attack, ct = a1 + / to the circle-R plane, as

shown in Fig. A.3(e), where 'a' is the flow incidence angle and -0 is the angle of zero

lift. The complex potential P for a uniform stream at incidence a! past an arbitrary

airfoil is obtained from the knowledge of the complex pote -itial for flow past a circular

cylinder. The complex potential P-plane is depicted in Fig. A.3(f) and, if used as a

final plane, it leads to a mesh with H-grid topology in the physical plane. This H-

type grid does not provide sufficient resolution in the rounded-LE region. Therefore,

yet one more parabolic conformal transformation is used to transform the airfoil to

the complex 77-plane, as shown in Fig. A.3(g). This now leads to a C-grid topology

in the physical plane. Even though the C-grid will provide some clustering the LE

region, the far-field boundary condition to be placed at infinity will lead to numerical

difficulties if 9-plane is used. Hence, the final transformation contracts this 77-plane

to the computational plane and is described in the next sub-section.

Clustering Transformations

One-dimensional clustering transformations are used to transform the upper-half stag-

nation point r7-plane to a unit square in the computational i-plane. Osswald, K. Ghia

and U. Ghia (1989) as well as Rohling (1991) have provided the details of the general

cubic-spline functions used. In the streamwise direction, independent cubic-spline

functions are used to achieve streamwise grid clustering along the suction and pres-

sure surfaces and in the mid-wake and near-wake regions, both above and below the

streamline which emanates from the trailing edge. The far-wake regions above and

below the TE streamline are contracted using 1-D inverse tangent transformations.

Similarly, 1-D cubic-spline transformations are also used in the normal directions in

two zones, namely, (i) boundary layer and (ii) massively separated region which also

includes the LE shear layer. Finally, a 1-D inverse tangent transformation is again

required to map the far-field infinity boundary to a unit distance in the computa-

tional i-plane. The various regions discussed here are depicted in Fig. A.4. A typical
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grid distribution for a NACA 0015 airfoil with (444 x 101) mesh points is shown

in Fig. A.5. An attempt has been made to resolve as many of the dominant scales

as possible; these include the boundary layer scale of O(Re-1 /2 ) for attached flow,

the streamwise and normal scales of O(Re-3 /s) and O(Re-/ 8 ), respectively, near the

separation point, the separated free shear layer with the scale of the order of its

thickness, the massively separated zone of 0(1) and the scale of O(Re-sI/) for the

boundary layer eruption in the separated region. This is important in order to ensure

that the simulation results truly preserve the physics of the problem. The way in

which this is partially achieved is by gencrating a grid with zonal attributes with

continuous metrics across all of the zones both in streamwise and normal directions.

Not only is the clustered conformal grid generated here by an analytical-numerical

procedure, but the evaluation of the metric tensor and base vectors is also carried out

analytically once the transformations have been defined.

2.A.4 Numerical Method

The basic numerical technique for maneuvering motion was developed by Osswald, K.

Ghia and U. Ghia (1990). Variations of this approach have been used by the present

researchers in some of their earlier papers. It is a fully implicit finite-difference method

involving direct matrix inversion methodology. All of the spatial derivatives are ap-

proximated using second-order accurate central difference approximations, except for

the convective terms. These latter nonlinear terms are approximated using a bi-

ased, third-order accurate, upwind differencing-scheme to be able to simulate higher

Reynolds number flows. The vorticity transport equation, Eq. (A.15), is solved using

a variation of the alternating-direction implicit (ADI) technique of Douglas and Gunn

(1964). When this technique is cast in delta form, it is computationally efficient. The

elliptic stream function equation, Eq. (A.14), is solved by a direct block Gaussian

elimination (BGE) technique. No explicit artificial dissipation is added in the imple-

mentation of the overall ADI-BGE method.

The algorithm consists of a forward elimination sweep for the vorticity and stream

function equations. This is followed by the determination of advanced wall vorticity,

together with the computation of the viscous circulation. This is achieved with the

help of Eq. (A.29) which requires continuity of the pressure at the trailing edge.

Both the wall vorticity and F(t) are determined using an iterative technique and by

maintaining a strict convergence criterion, such that the relative percentage error is
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less than 10'-, and the residue in the instantaneous wall vorticity is negligible. Sub-

sequently, the back substitution sweep for the vorticity and stream function equations

is carried out to achieve the final solution. It should be noted that, due to the use of

the third-order biased upwind differencing, the discretized problem leads to a penta-

diagonal matrix which can be solved using a generalized Thomas algorithm.

One final comment corresponds to the determination of the pressure field. The

analysis provided so far is adequate if only surface pressure is of interest. On the

other hand, if the entire pressure field is desired, the solution of a Neuman.t Poisson

problem for pressure can be carried out as given by K. Ghia, Yang, Osswald and U.

Ghia (1992a). The results obtained in the present study are discussed next.

2.A.5 Results and Discussion

The continuous and discrete analysis developed in the earlier sub-sections is used

to study the motion past maneuvering NACA airfoils. In this sub-section, first the

constant-rate pitch-up motion studied will be outlined, followed by validation and

verification studies. Finally, some detailed results will be provided for constant-

rate pitch-up motion; these results are computed without and with modulated suc-

tion/injection. Simulation results are also obtained in the form of a color video ani-

mation and, while discussing the results, the present authors have taken the liberty

to use these animations to clarify various research issues and provide further insight

into the prevailing flow phenomena.

A total of three flow configurations have been studied;

these are as listed below.

Configuration Re &+/K Remarks
I 5,000 1.0 for verification study

II 45,000 0.2 without flow control
III 45,000 0.2 with modulated suction/injection

In addition, results have been obtained for a flow configuration with Re=52,000

and &+ = 0.072. These results have been discussed by Yang (1992).
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Constant-Rate Pitch-Up Manuever

In all the earlier studies by the authors, the constant-rate pitch-up motion used is

the one defined by Visbal and Shang (1989) as:

fB/I(t) = 0,

OB(t)= o[t C (2(1_ (A.53)

(4.6)

where o - =u- is the non-dimensional pitch rate and GB(t) is the instantaneous

pitch angle of the airfoil. In the present study, t, = 0.5, f,, = 0.2 and the airfoil is

pitched about the axis through the quarter-chord point (QCP).

Verification Study

The earlier studies of the authors in Refs. (A.11, A.12, A.13, A.14 and A.281 have al-

ready established that the mathematical model is accurate and that the modification

in the far-field boundary condition which necessitates the use of viscous circulation

F(t) has indeed given better results, as shown by Osswald, K. Ghia and U. Ghia

(1992). Thus, the main emphasis here is on the verification study, rather than on

validation of the mathematical model. In this verification study, the accuracy of

the numerical solutions obtained is examined critically, and the influence of the dis-

cretized parameters of the problem on the solution is assessed.

Flow Configuration II described above is used for the verification study. The

parameters for this basic flow configuration II are Re = 45,000, &I = 0.2. Three dif-

ferent grid sizes, namely (i) coarse grid with (330x75) points, (ii) medium (standard)

grid with (444 x 101) points, and (iii) fine grid (544 x 121) points are used. The

minimum grid spacings for the standard grid in the streamwise and normal diretions

near the leading edge were 0.54 x 10-3 and 0.26 x 10-, respectively. To resolve the

temporal scale of this unsteady separated flow problem and to achieve time consis-

tency of the solution, a value of At = 0.001 was chosen. The code has been fully

vectoized and requires 7.5 micro-seconds per time step, per mesh point, using a single

processor of the CRAY Y-MP 8/864 of The Ohio Supercomputer Center.

Effect of Grid Stretching on the Solution

Unique to the present analysis is the fact that the far-field boundary condition is
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implemented at true infinity. As discussed earlier in the Section A.3.2, 1-D cluster-

ing transformations are used to treat the infinite domain numerically. It is the arc

tangent transformation that permits the mapping of the boundary at infinity to a

finite location in the computational plane. This implies that the grids are stretched

exponentially and it is important to examine the variation of the dependent variables

in the far field and, specifically, their approach to the imposed far-field boundary con-

ditions, if the solutions are to be accurate. Due to the clustering transformation, cells

of semi-infinite extent occur in the physical plane. The effect of large grid stretch-

ing on the solution can be seen best in the computational plane, and is discussed now.

Vorticity attenuates exponentially away from the surface where it is created. Fig.

A.6(a-b) shows the vorticity contours for flow past a NACA 0015 airfoil undergoing

constant-rate pitch-up motion with &+ = 0.2, for two different instantaneous po-

sitions, a = 20.540 and 36.58', respectively. The global views for both instants are

shown in this figure, as are the enlarged views in the far-field, which clearly show that

the vorticity approaches smoothly to the far-field boundary condition of &t = 0. The

effect of grid stretching on the corresponding stream function is shown in Fig. A.7.

A close look at Fig. A.7(a-b) clearly shows that the far-field boundary is reached as

the value of the deviational (i.e., the disturbance) stream function approaches zero,
ieas V) = 0.

A round-off error study was also performed, and the procedure is as follows. In

the Dirichlet Poisson equation for t)D, Eq. (A.14), tbD4 is assumed to be known ana-

lytically as any one of the two functions prescribed in Fig. A.9. With this function,

the source term involving wo- is computed numerically using a finite-difference stencil,

with extended precision. The computed values of wt are used to solve the stream

function equation, Eq. (A.14), and the numerically computed values of V are com-

pared with the corresponding known analytical values. The difference in the two

solutions represents the round-off error on the present (444 x 101) grid. Fig. A.9

clearly shows that the maximum error never exceeds 10- for a solution field which

lies between 0 and 1. The error also does not exceed the maximum truncation error

of O(10-'). In addition, the metric coefficients used in the calculations are shown in

Fig. A.8; these are well behaved as expected.

Grid-Refinement Study
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The grid distribution for all of the three grids mentioned earlier, in the proximity

of the NACA 0015 airfoil are depicted in Fig. A.10. For the airfoil at zero angle of

attack in flow configuration I1, the instantaneous vorticity contours near the TE and,

subsequently, in the near wake, are presented here. They show that the flow structure

consisting of nearly symmetric vortices at the TE prevails for all of the grids at t =

3.5. As t increases to 4.5, the results of the finer grid show that the vortex symme-

try is broken, that is the Hopf bifurcation has just occurred forming the asymmetric

needle-type vortical structures of opposite sign in the flow field. At still larger time t

= 5.5, the flow field results of medium grid show the vortex shedding process which is

not only lagging the fine grid results but it also is out of phase with the latter results.

The coarser results still continue to show further growth of the symmetric vortical

structures near the TE. For truly unsteady flow, it is difficult to carry out this grid

refinement study, but in light of present results the degree to which the differences

are observed is clarified.

Once the asymptotic state is achieved for the flow field with the airfoil at zero

angle of attack, the constant-rate pitch-up motion with &+ = 0.2 was initiated. The

results in terms of the instantaneous vorticity contours for 15.96" < a < 35.44*

are delineated in Fig. A.11. The coarse-grid results are quantitatively different. It

should also be stated that, as compared to the results in Fig. A.10, the results for

the medium grid do show departure from the fine-grid results, although qualitatively

the two structures are very similar. Thus, the results in Fig. A.11 suggest to further

refine the grid and see if the changes are smaller than the previous refinement in which

grid size was changed from (444 x 101) to (544 x 121). Unfortunately, the results

with the (544 x 121) are computationally very costly, with the total CPU time for

the fine grid case nearly 5 times higher than for the medium grid case using a single

processor on the CRAY Y-MP 8/864 at the Ohio Supercomputer Center. Next, the

Cp-distribution at the surface as well as wall vorticity are plotted in Figs. A.12(a-b)

for a = 14.810 and 29.71', respectively. For a = 14.81', where the flow is mostly

attached, the surface C.-distribution for all three grids is in conformity and it even

agrees well with the experimental data of Walker, Helin and Strickland (1985). The

corresponding wall vorticity has a similar behavior, as shown in Fig. A.12(a); how-

ever, there are no experimental data available for wall vorticity. On the other hand,

at a = 29.71', with massively separated flow regions, the surface Cp-distributions
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show significant changes, although qualitatively they do conform to the experimen-

tal results given by Walker, Helin and Strickland (1985). In Fig. A.12(b), the wall

vortirity on the suction surface does show significant departures, again questioning

the grid independence of the results between the medium and fine grid at this level

of the grid size. The only satisfactory comparison is that for CL, as shown in this

figure. It depicts that the coarse-grid results compare well with the experimental

data of Walker, Helin and Strickland (1985). However, the medium- and fine-grid re-

sults predict higher CL-distribution in the massively separated flow regime. A careful

examination of the experimental set-up reveals that Walker et al. (1985) had only'

36 surface static pressure taps, as compared to about 207 grid points in the present

simulation with (444 x 101) grid points. Thus, better resolution in the computa- I
tional simulation permits determination of each of the individual vortices that evolve

and carries with it somewhat hiiher values for CL-dc1'stribution as compared to the

corresponding exrerimental values. Hence, for the finest grid used present, still larger

values of CL are seen in this figure.

Comparison with Available Navier-Stokes Results

Simulation results are also obtained for a sinusoidally pitching NACA 0012 airfoil

with Re = 5,000, a = 10°(1 - cos kt), and reduced frequency based on chord length, k

= 1.0. Some experimental data is available for this configuration from WerI6 (1976).

Also, Mehta (1977) has provided carefully simulated ',Navier- Stokes results using the

NS equations in terms of (c;, k). He has used an O-grid topology and provided detailed

results. As seen in Fig. A.13, the streaklines for the present results compare favorably

with the experimental data of Wert6 (1976) and show a flow structure representative

of unsteady flows. The flow is separated over the entire suction surface. Also shown

in this figure are the contours of instantaneous vorticity and the velocity vectors.

The better resolution of the present results is clear and these results conform well

with those of Mehta (1977). For this sinusoidally pitching airfoil, the instantaneous

stream-function contours are compared in Fig. A.14. The results first show one

instant for a = 18.59' in the upward stroke, which goes up to a - 200, and then four

values of a for the return stroke. For the stream function, which is not very sensitive,

the agreement is good. For the same values of a, comparison is also provided for the

instantaneous vorticity contours in Fig. A.15. The qualitative agreement between

the two sets of results is very good, although the better resolution of the present
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results due to the use of a finer grid, made possible by a better and larger computer

is very evident. The complete evolution of the dynamic stall event is vivid, and some

of the interactions that take place can be inferred from this figure. Finally, the CL-

distribution, as well as the surface pressure coefficients for two values of a, namely,

a = 18.57* during pitch-up and a = 11.11V during pitch down, are shown in Fig. A.16.

Also shown in this figure are the results of Sankar and Tassa (1980). In general, CL

compares qualitatively with the existing results, but there are significant deviations.

For the time being, this completes the verification study; additional verification with

experimental data is provided in the next sub-section.

Influence of Initial State on the Flow Field

For flow configuration II, results are initially obtained to determine the asymptotic

state at fixed angle of attack. Since this asymptotic state is not unique, the effect of

the initial state of flow will prevail in the final solution. To determine this effect, three

different asymptotic states are selected, and correspond to states (b), (c) and (d) on

the CL-history curve in Fig. A.17 corresponding to a = 00. With these states as

the starting solutions, three different calculations are made for constant-rate pitch-up

motion and the results are compared in Fig. A.17. The lift coefficient distribution, as

well as the viscous circulation, for all three cases do conform with each other and do

not show strong influence of the initial state. The instantaneous vorticity contours are

also shown in this figure and, although there is a phase difference in the development

of the wake, the overall influence is minimal.

Flow Structure for Configuration II: Re = 45,000, No Suction

For this configuration, Walker, Helin and Strickland (1985) have provided flow visu-

alization photographs for six selected values for angle of attack. These photographs

very vividly show initially the region of separated flow near LE and TE and, sub-

sequently, the formation of a highly energetic dynamic stall vortex. Streaklines are

plotted in Fig. A.18 at a = 24°,27',30',40* and 470 and they compare well with the

flow visualization data. Further, the CL-history, as well as the surface distribution

of Cp are compared with the experimental data in Fig. A.19(a,b). As seen in Fig.

A.19(a), the CL-distribution agrees qualitatively, but shows higher values of CL. It

was also pointed out that better agreement with experimental data is obtained for the

coarse-grid simulation using (330 x 75) points. Also shown here is CL-distribution
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predicted by Visbal and Shang (1989); this too agrees better with the experimen-

tal data. In the opinion of the present authors, this is again due to their relatively

somewhat coarser grid of (203 x 101) points, coupled with their treatment of the

far-field boundary condition. Next, the coefficient of surface pressure distribution is

compared for two values, a = 14.810 and 29.71', in Fig. A.19(b). As seen here,

the comparison with the experimental data of Walker, Helin and Strickland (1985)

is good for a = 14.81', whereas, for a = 29.710, the two-distributions depart signifi-

cantly at the suction surface. It is again the opinion of the authors that this is due to

three-dimensionality in the flow field. The results presented so far, provide additional

verification of the present analysis.

Next, the detailed flow structure is depicted in Figs. A.20-A.21 using the instan-

taneous vorticity contours with a varying from 11.37' to 29.71'. Here, global flow

structure information is made available, along with an enlarged view showing the LE

flow structure. As the airfoil is pitched-up, flow reversal takes place near the LE as

shown in this figure. Subsequently, the flow reversal evolves into secondary, tertiary

and quaternary vortices. The eruption of this secondary vortex structure initiates

the formation of the energetic dynamic-stall vortex. K. Ghia, Yang, Osswald and U.

Ghia (1992) have provided further details of this behavior.

Flow Structure for Configuration IH: Re = 45,000 with Modulated Suc-

tion/Injection

In an attempt to control the formation of the dynamic stall vortex, two specific

MSI controls were used. These are Case I with v,/U.. = 0.045 and Case 2 with

v,/U,, = 0.035, as presented in Fig. A.22. The ramp functions used for these two

configurations to bring the magnitude of suction velocity to its final magnitude are

shown in this figure; these magnitudes are held constant thereafter. Also shown in

this figure is the viscous circulation for configuration III as well as for both cases of

configurations II. The start of the MSI is also indicated. In addition, the velocity

vectors are shown for both cases for three different values, a = 23.980,25.12* and

26.27'. Also shown here are the velocity vectors as well as Cp-distribution on the

suction surface for flow without and with MSI. In Fig. A.23, the instantaneous

vorticity contours as well as the wall vorticity are shown for configurations II and III.

In this figure, results are also plotted for one additional value of a = 22.830. The

instantaneous vorticity contours for various a show that the dynamic stall vortex does
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not develop with MSI activated. Further, the controlled wall vorticity does not show

sharp spikes leading to suppresion of the formation of the stall vortex. The results

showing the effect of MSI on CL, CD, CM and L/D are most significant, since they show

directly whether or not the desired control is achieved. Fig. A.24(a) shows that there

is not much significant change in CL , but as seen in Fig. A.24(b), CD is considerably

reduced by MSI for Case 1 at higher a. Although CM distribution does not show a

clear trend, in Fig. A.24(c), L/D in Fig. A.24(d) increases rapidly as compared to

that for the flow without MSI. Finally, controlled modulated suction/injection is also

attempted using configuration III, with a more gradual application of MSI control

as shown in Fig. A.25. Compared to Case 1, the viscous circulation is sufficiently

reduced, for this new Case 3. As before, the velocity vectors as well as C.-distribution

on the suction surface are also plotted. The corresponding instantaneous vorticity

contours and wall vorticity are shown in Fig. A.26. The results for Case 3 with its

gradually implemented MSI are very similar to those for Case 1. Finally, the effect

of gradually applying MSI does not show any significant changes as compared to the

standard Case 1.

2.A.6 Conclusion

An unsteady NS analysis is developed using the (car, v,, [(t)) formulation. Inclusion

of viscous circulation permits accurate treatment of the far-field boundary condi-

tion. The implicit ADI-BGE numerical technique provides a uniformly second-order

accurate solution, with higher accuracy for the nonlinear convective terms. The grid-

independence study showed that, for this constant-rate pitch-up motion in the regimes

where the flow is massively separated, the finest-grid solutions still show more than

desired deviation from those of the medium grid used here to obtain all the solutions.

Also, since the experimental pressure distribution is measured using a limited number

of pressure taps, the coarse-grid CL-distribution agrees well with these results. The

role of unsteady separation was discussed by the authors in detail in Ref. [A.121 and

is therefore not described here. Based on that earlier description, a modulated suc-

tion/injection control strategy was developed and used in this study. The suppression

of LE-flow separation provides a very effective means of controlling the formation of

the dynamic stall vortex, even with small volumetric suction rate S = -0.00237.

The authors believe that the 2-D analysis developed here is accurate and that any

further discrepancies observed are due to three-dimensionality effect. An effort should
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be made to accurately simulate the three- dimensional flow past this 2-D geometry.

Effort is also necessary to incorporate an adaptive-grid refinement in this analysis, in

order to obtain higher-Re solutions and also resolve the time scale of the eruption of

the secondary structure of O(Re- 2/t). The three-dimensional analysis should also be

coupled with a large-eddy simulation technique in order to obtain higher-Re solutions

of greater practical interest.
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2.B Three-Dimensional Iterative Technique with
Multi-Grid Acceleration

2.B.1 Introduction

Three-dimensional unsteady incompressible flows are of general practical and compu-

tational interest. Modern computers have enabled simulation of more complex flows

occurring in engineering applications. A number of numerical algorithms have been

developed to solve incompressible 3-D Navier-Stokes equations, using either primitive

variables or vorticity-based formulations (Refs. [B.6, 11, 21, 22, 23, 24]).

Efforts are regularly pursued for the optimization of numerical simulation tech-

niques to obtain enhanced computatinal accuracy and efficiency. The present study,

thus, is aimed at developing an efficient algorithm for the velocity problem emerg-

ing from the vorticity-velocity formulation of 3-D Navier-Stokes equations, using fine

grids. Multigrid (MG) techniques have provided an efficient methodology to achieve

this. The present sub-section describes the development of an MG method and its

application in unsteady three-dimensional incompressible flow simulation using the

vorticity-velocity (•- V) formulation of the Navier-Stokes equations. Second-order

accuracy, both in time and space, is obtained via central-differencing the vorticity-

transport equations and the elliptic velocity problem.

2.B.2 Vorticity-Velocity Formulation of 3-D Navier-Stokes
Equations

The vorticity-velocity (.-V) formulation, as opposed to the primitive-variable (V.-p)

formulation, is selected in the present study because the former has the impressive fea-

ture that the spin dynamics of a fluid particle (represented by the vorticity-transport

equations) is naturally separated from the kinematic motkin of the fluid particle (rep-

resented by the elliptic velocity problem). It is recognized that the vorticity is a linear

function of velocity, whereas the pressure is a nonfi,.ear function of velocity. There-

fore, the resultant numerical methods are easier to deal with, from a computational

point of view. Furthermore, with appropriate interpretation of the variz'bles, the

vorticity-velocity formulation retains its form even in non-inertial coordinate systems.

As discussed in Refs. [B.13, 18, 19], the non-dimensionalized incompressible

Navier-Stokes equations can be written as follows in terms of vorticity-velocity vari-
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ables in general vector conservation form:

t Re

where Re=LRVRIV is the Reynolds number, based on an appropriate reference length

LR and velocity VR.

The kinematic velocity problem (KVP) is formulated directly from the continuity

equation and the definition of the vorticity vector:

V * V 0, (B.2)

Vx VX (B.3)

subject to constraints:

JJ VsdS 0 (BA)

and

V • 7 =_ 0. (B.5)

Eqs. (B.4) and (B.5) are necessary and sufficient conditions for the existence of a

unique solution for Eqs. (B.2) and (B.3). Consequently, the 3-D velocity problem

is completely described and determined by Eqs. (B.2-B.5) and the boundary condi-

tions. It is important to note that the constraint Eq. (B.5) is time-invariant, whereas

applying the divergence operator on Eq. (B.1) yields that O(V * O)/lt = 0; together,

these ensure that the velocity is determined uniquely for t > 0.

The governing equations and constraints, Eqs. (B.1-B.5), are then expressed in a

general curvilinear orthogonal coordinate system ( Covariant components

of both velocity and vorticity are employed. This permits the strong conservation-law

form of the governing equations to be maintained and the constraints to be satisfied

analytically in the generalized coordinate system. Another significant consequence

of the covariant decomposition of both velocity and vorticity vectors is that the gen-

eralized form of the curl Eq. (B.3) contains no variable coefficients. Furthermore,

the components of the vorticity-transport equation are characterized by the fact that

mixed derivatives appearing in the equation for one component (e.g., wl-equation)

involve only the other two components of vorticity (w2 and w3 ); this allows implicit

treatment of these terms within an approximately-factored solution scheme (Refs.

[B.13, 18, 191).
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2.B.3 Numerical Scheme

Second-order finite differencing is used in the discretization of both vorticity-transport

equations and the kinematic velocity problem on a staggered grid. The velocity com-

ponents are defined at the centroid of, and perpendicular to, the cell surfaces. The

vorticity components are tangent to the grid lines and are located at the mid-point of

the cell edges. This particular staggered arrangement has the advantage that a set of

physically consistent algebraic equations may be derived, that satisfy the constraint

Eqs. (B.4) and (B.5).

First of all, The boundary conditions on velocity must be such that the global

mass is conserved (Eq. (B.4)). Strong conservation-law form of Eq. (B.2) guarantees

that the integral constraint (Eq. (B.4)) will be satisfied if the equation of continuity

at each computational cell is satisfied.

Secondly, the discrete counterpart of Eq. (B.5) will be satisfied at any time during

the evolution of the flow if it is satisfied initially and the Agebraic vorticity-transport

equation is solved by a direct method. However, in the present work, the vorticity-

transport equations are solve, ., a modified ADI method developed by Osswald et

al. (1988). The approximate factorization creates a splitting error of order O(At2 );

the time-marching soluti-n of the vorticity field will then be divergence-free up to the

same order. Consequently, the convergence of the iterative solution for velocity field

will be limited by this error.

For the velocity problem, Osswald et al. (1987) had employed a direct solver, Block

Gaussian Elimination (BGE), to compute the velocity field. Due to the limitation of

the current core memory of the available supercomputers, application of the direct

solver is restricted by the allowable grid size. Therefore, iterative schemes, widely

utilized in the solutions of PDE's (Refs. [B.1, 3, 9, 10, 171) are explored in the present

study. Table B.1 compares the requirements of storage between the direct solver

BGE and the Multi-Grid Distributive Gauss-Seidel (MG-DGS) iterative algorithm

developed in the present study for the velocity problem. it is evident that t'e iterative

method will ease the memory demands. However, iterative methods frequently exhibit

slow convergence rates.
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Multigrid Method

Multigrid methods can help to accelerate the convergence of the iterative process

for the discretized system of Eqs. (B.2-B.3), because the system is of elliptic type

Refs.([B.3, B.8]). It is known that any iterative scheme is only effective in its ini-

tial stage, when oscillatory (high frequency) error components are dominant. The

slowdown thereafter is caused by the ineffectiveness of the relaxation to smooth (low

frequency) errors on the current fine-grid. By switching to a coarser grid level, these

low-frequency error components will become oscillatory on the coarse grid, and will

be smoothed out efficiently by the relaxation.

Although variable coefficients are possible due to coordinate transformation in

Eq. (B.2), the system of Eqs. (B.2-B.3) is always linear. As a result, the Correction

Scheme (CS) of Brandt (1979, 1984) is employed in the current study. A stable and

efficient Distributive Gauss-Seidel relaxation scheme is developed to smooth out os-

cillatory errors. Only the residuals on the findgrid need be restricted to the coarse

grid. The correction is obtained by relaxation on the coarse grid; it is then interpo-

lated (prolongated) back to the fine grid to correct the old fine grid approximation.

The restriction, interpolation and coarse-grid operators will be discussed later in the

sub-section.

Standard full coarsening is used to define coarser grids. As a result, one coarse

computational cell contains eight fir.e cells. Because of the staggered grid arrange-

ment, the coarse-grid function locations never coincide with the locations of the fine-

grid functions. The Multigrid cycles used in the present study are interacted adap-

tively (Accommodative Cycle). Since the flow in the present study is time dependent,

the iterative solution of the velocity field is repeated at each temporal step. The so-

lution at the previous time step serves as a good approximation for the solution at

the new time step. Thus, the MG cycle starts at the finest grid, visiting the coarser

grids successively to obtain the correction.

Relaxation Scheme

To arrive at a fast MG algorithm, the discretization of the boundary-value problem

should be stable in the first place. The central differencing scheme on the staggered
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grid used in the present study for the velocity leads to finite-differenced equations

that are stable and elliptic (Ref. [B.31).

The standard pointwise Gauss-Seidel (GS) relaxation is usually efficient for a

single equation. However, the discretized system for the velocity problem does not

contain a one-to-one correspondence between the unknowns and the equations. The

equations are coupled to each other, and therefore, a pointwise GS scheme would not

work effectively. An alternate scheme, Distributive Gauss-Seidel (DGS) scheme, is

thus recommended for systems of equations (Ref. [B.1]). In the DGS scheme, each

discretized equation in the system is satisfied in turn by distributing its residual to

all the unknown variables associated with this equation. This is done in such a way

that the residuals of the remaining equations are kept unaltered. Mathematically

the system for Eqs. (B.2-B.3), can be written symbolically as a matrix operator form

LV = f with L = (V.,V Vx)r. It is then reformulated as follows:

LLui= f (B.6)

where the operator LT, preferably, has a diagonal (or block diagonal) structure. The

Gauss-Seidel iteration is then formulated with respect to the new unknown tJ (called
"ghost unknown" by Brandt (1984). A new iteration V = LW- will yield the original-

grid function V. In fact, the new unknown w is neither stored nor calculated in the

actual program.

The advantage that the DGS scheme gains is that LL usually possesses better

smoothing rate than L itself. For the present velocity problem, the operator LL will

become

LLT f V2 0x (B.7)L= 0 VxV Ix

if L is chosen as (V, Vx). It is seen that the operator LL contains the second-order

Laplacian; better smoothing rate is expected when relaxing Eq. (B.6).

Specifically, the continuity equation is scanned and satisfied, while keeping un-

changed the residuals of all neighboring curl equations. The distributed amount

should be suitably modified for boundary cells where only interior velocities are up-

dated to satisfy the continuity equation for the boundary cells. Red-Black ordering

is employed for the relaxation of the continuity equation to achieve vectorization.
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For the curl equations, the present DGS scheme groups all three curl equations

and relaxes them simultaneously in the prescribed order, keeping all the residuals of

the neighboring continuity equations unchanged. Although the scheme turns out to

be a little cumbersome algebraically, the principle is exactly the same as for relaxing

the continuity equation. Four-color ordering is used to eliminate data dependence,

and achieve vectorization of the relaxation sweep for all three curl equations.

Lexicographic ordering is also used in the present study as well as red-black/four-

color ordering. It is found that the smoothing rates for both orderings differ very

little for the present velocity problem.

Interpolation IMj

The operator IM interpolates the coarse-grid (M - 1) function to the fine grid

(M). The order of the interpolation should be dictated by the order of the difference

(or differential) equations (Refs. (B.1, B.8]). In addition, the integral constraint,

Eq. (B.4), must be satisfied on all grid levels so that consistency is maintained.

Trilinear interpolation for the interior grid points and linear interpolation for the

near-boundary points are constructed to fulfill these requirements. Each of the three

velocity components is interpolated separately. Then, the interpolation for V1 follows:

IM VM-1 M-M-M- M-
.% - Vl 1k - l(9VlM-I + 3V1MI' + 3VlM-+ + VlM+k+'), (interior)

16 '%. i+lk ijk+I i3+lkl,(neir
1M&•- AlM-I M-1

"M-1Vl--', = (3Vlq- +VIM-'), (boundary)

I[ l VIM1̀ - VIM` (corner) (B.8)Ml-1 --'k =Vifk

for the fine-grid variables on the coarse-grid plane, and

IM VIM-' M (L 1,' - [1 (_1vM- + (B.9)
tM-1 ' t+ljk - "2kt- Vijk M I+ y+ 2-jk)

for the fine-grid points on the plane between two coarse-grid planes. Similar expres-

sions are developed for the V2 and V3 components. In case -of variable coefficients

as a result of non-uniform grid, the variable VI in Eqs. (B.8-B.9) should be taken as

the product of the V1 and the corresponding coefficient. Such a scheme ensures that

the integral constraint is satisfied on all grid levels.

Restriction 1 M-1
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In the Correction Scheme, only residuals need to be transferred to coarser grids.

Full weighting, which averages all of the neighboring fine-grid residuals, is especially

important for difference equations with varying coefficients. This is exactly the case

for the velocity problem in the present study. Thus, full weighting (FW) residual

transfer is constructed for all the residuals in the study.

As the finite-difference equations for the velocity problem are centered at different

locations, residuals are transfered separately for each equation. Specifically, for the

continuity equation, the restriction operator is:
IM-I M M1dM ,f

i& -(rd)ifk = Pi Yj '4 (rd)Mk, (B.10)

where pfi~ I 14%k+fi-k j + is the mid-point average operator for any grid func-

tion f at level M, and rd is the residual of the continuity equation. The coarse-grid

source term for the continuity equation is thus the average of the neighboring eight

fine-grid residuals.

Similariy, the full weighting for the residual transfer of W1 (discretized wI) com-

ponent of the curl equation is written symbolically as:

ýWM-lz'(r M) = ,, \ (B. 11)
(rW1ijk -- z k tJ /k ]i trllj.

This says that the coarse-grid source term W1 1M-1 is the weighted average of the

eighteen neighboring fine-grid residuals. The residuals for W2 and W3 components

of the curl equation are treated in a similar manner.

The above restriction operator also preserves the two compatibility conditions,

given by Eqs. (B.4) and (B.5), throughout all the coarse-grid levels, as long as they

are met on the finest grid.

Coarse-Grid Operator LM-'

The guideline in constructing the coarse-grid matrix operator LMI- is that LM-I

should be a proper homogenization of the fine-grid operator LM. One way to achieve

this is to define L"-' in the same manner as LM from the corresponding differential

operators. This approach is employed in the present study. Therefore, no additional

computations are needed for defining LM-', except when varying coefficients occur
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in Eq. (B.2) because of coordinate transformation. In this case, some appropriate

averaging is needed to define the coarse-grid coefficients. Since the varying coefficients

for the fine-grid are due to the coordinate transformation, the weighted average of the

fine-grid coefficients is naturally a proper definition for the coarse-grid coefficients,

and thus for the coarse-grid operator LM-1. The so-called minimal weighting (Ref.

[B.3]) is employed for forming the coarse-grid coefficients, as for example,
GllM-' = AMMGIIM (B3.12)

"iik = k liik

where Gl1ljk is the discretized metric coefficient occurring in Eq. (B.2) due to coor-

dinate transformation.

2.B.4 Model Velocity Problem

Numerical experiments have been conducted using the DGS relaxation scheme de-

veloped together with the MG procedure. A test function cos(sin(xyz)) is used to

generate a 'velocity' field in the Cartesian domain. The divergence and curl of this

vector field are then computed using the discretized form of the governing equations

(Eqs. (B.2-B.3)) and provide the appropriate source terms for these equations. Then,

the multigrid method developed is used to solve these equations with modified source

terms and determine 'velocity' field, starting with an appropriate initialization (zero

is taken in the present test case), until the prescribed convergence criterion is satis-

fied. Both uniform and non-uniform grids have been used. The non-uniform grids

were generated by algebraic clustering.

Figures B.1-B.3 demonstrate graphically how the MG-DGS scheme improves the

convergence rate, relative to the single-grid (SG) results, for both uniform and clus-

tered (25 x 25 x 25) grids. Table B.2 gives some numerical values for the MG-DGS

scheme for several uniform and non-uniform grids.

It is seen that the CPU time increases linearly and the convergence rate is main-

tained at about 0.42/WU for uniform grids with the size increasing from (25 x 25 x 25)

to (33 x 33 x 33) to (49 x 49 x 49). Similar results are obtained for non-uniform

(25 x 25 x 25) and (33 x 33 x 33) grids with moderate clustering. The expected

multigrid convergence rate is obtained. The convergence rate A in Table B.2 is the

average of the total rate defined by:
rl 11j. )I/WU
r 11~t.

5r
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where the norm jj is defined as the root-mean-square of the residuals and WU is

the number of work units executed.

It is seen that when varying coefficients occur, as a result of grid clustering, the

asymptotic convergence rate degrades slightly. Grid spacings for non-uniform grids

used in Table B.2 have differences of one order of magnitude. The deterioration is

greater for the case with more highly varying coefficients. This is demonstrated in

Fig. B.3, where the minimal spacing is of order 0(10- 3 ) and maximal spacing is of

O(10-'); i.e., a difference of two orders of magnitude exists in the coefficients. Further

numerical experiments with different test functions indicate that the convergence also

depends upon the nature of the velocity field itself. It is noted that the clustering

is strong near the boundary (wall) of the domain because high gradients of the flow

variables (vorticity and velocity) are expected here in the actual viscous flows. Figure

B.4 shows the convergence history obtained f:om the actual flow simulation for the

3-D shear-driven cavity of aspect ratio unity using the same clustering as in Fig. B.3.

Desirable convergence rate is observed for this strongly clustered grid (two orders of

magnitude difference), thereby demonstrating the robustness of the MG-DGS scheme.

2.B.5 Some Physical Aspects of Unsteady 3-D Shear-D•4crI
Flow

Shear-driven flow in a cavity has drawn much attention in the fluid dynamics commu-

nity because of its richness of flow structure and complexity of dynamical phenomena,

as well as the simplicity of its geometry and well-defined boundary conditions. Care-(ful experiments have been conducted by Koseff and Street (1984), among others, to

study the characteristics of this fiow. The cavity has also been chosen as a benchmark

test by many CFD practitioners; for example, Refs. [B.7] and [B.21], for both 2-D

and 3-D flow simulations.

The shear-driven cavity flow has many complex flow structures. Multiple recir-

r'-xist as a result of strong viscous effects exerted by the walls and the

sharp corners in the geometry. Of special interest are the three dimensionality and

the longitudinal vortices. Efforts are made in the prest

cavity flow using the MG-DGS method to validate the method as well as to study )
the flow itself.
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Figure B.5 depicts the configuration of the 3-D shear-driven cavity flow. The up-

per wall ABFE is impulsively set in motion in the direction parallel to itself. The

flow is thus symmetric with respect to the mid-span plane. The typical time-averaged

flow pattern in the symmetry plane is shown, schematically, in Fig. B.6. The flow

exhibits three significant recirculation regions, in addition to the primary vortex: the

downstream secondary vortex, the upstream secondary vortex and the upper-surface

secondary vortex. These features make this flow a benchmark model for testing nu-

merical methods for incompressible viscous flows.

The formation of these recirculation regions is the result of the wall friction and

the stagnation induced by the corner. Moreover, the separation zone downstream

provides a concave boundary for the primary flow coming down from above. This

suggests the occurrence of the Taylor-G~rtler-like (TGL) vortex above the separation

surface. The phenomenon was, indeed, observed in the experimental study by Koseff

et al. (1983, 1984). These vortices are susceptible to instability; they may eventually

lead to transition at higher Reynolds number.

Examination of TGL Vortices

In an attempt to capture the TGL vortices, a case with higher Reynolds number

Re = 3300 is investigated. The spanwise aspect ratio is 3:1. This corresponds to the

experimental setup used in Ref. (B.141. Figure B.7 shows the visualization results

obtained by Koseff et al. (1983). The TGL vortices in the lateral plane at z' = 0.8

are clearly seen in Fig. B.7(b).

To resolve the viscous boundary layer near the wall and the shear layer at the

upper surface, a non-uniform (65 x 65 x 33) grid is generated, with clustering in the

X1 and x2 directions. The total core storage requirement for this grid size, using the

ADI+MG-DGS method, is about 5 megawords. A time step of At = 0.01 is used in

the marching solution for the unsteady flow. The convergence criterion for the finest

grid for the MG-DGS method for the velocity problem is taken to be 5 x 10'. Table

3 lists the CPU index for the flow simulation; comparison is also made with the BGE

method (Ref. [B.19)) for the (25 x 25 x 25) uniform grid at Re = 400.

Figures B.8-B.9 show the results of the flow simulation for the 3-D cavity with 3:1

spanwise aspect ratio and Re = 3300. The flow is computed until characteristic time
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T = 21. The steady state has not yet been reached; it is also likely that a steady

state may not exist for this Reynolds number.

The flow pattern shown in Fig. B.6 in the symmetry plane is recovered numeri-

cally in Fig. B.8. It is evident that major recirculation zones are developing at the

downstream lower endwall, upstream lower endwall and upper surface corner. How-

ever, the separation at the upper surface is not strong at this stage. It is found that

the viscous boundary layer and the upper surface shear layer are resolved well with

the clustered (65 x 65) grid in the symmetry plane for Re = 3300. Table B.4 lists

the sizes of the downstream secondary eddy at T = 15, 17 and 21; the corresponding

time-averaged experimental result (Ref. [B.15]) is also included.

Figure B.9 shows the temporal development of the longitudinal vortices at the

lateral planes x' = 0.5. The results show strong 3-D effects developing in the flow.

Two pairs of TGL vortices have obviously developed above the bottom wall. It is

noted that these vortices started near the endwall and develcnen towards the cen-

tral region. This indicates that, in addition to the downstream concave separation

surface, three-dimensionality is influential in the formation and development of the

longitudinal vortex. It can also be seen in these figures that, to counteract these TGL

vortices, sub-vortices of smaller sizes are generated very close to the wall. Moreover,

longitudinal vortices also develop near the upper surface. It is deemed that the

strong viscous shear layer and three-dimensionality are responsible for the occurrence

of these longitudinal vortices. It is observed that the spanwise grid size (33) is not

sufficient to resolve both the boundary layer near the endwalls and the shear layers

forming thereafter in the interior of the flow. Evidently, the spanwise grid should also

be clustered near the walls.

Examination of Streamwise-Vorticity Transport

Amongst the physical phenomena associated with the 3-D flow in a driven-cavity with

finite span is the transport of streamwise vorticity, which is very important in helping

understand the fundamental physics of the interaction between the main flow and

the secondary flows. Therefore, effort was directed at carefully examining the flow

structure in the spanwise direction, in an attempt to gain meaningful information

about the flow.
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To help reduce CPU time and core storage, the computational domain used con-

sists of only one half of the cavity (see Fig. B.9) with a non-uniform staggered grid

(65 x 65 x 49). Symmetry boundary conditions are used at the symmetry plane z = 0.

The Reynolds number of 3200 is based on the velocity (VR) of the top surface in z-

direction and the depth (LR) of the cavity. The flow is started impulsively from rest

with the time-step At = 0.005.

Symmetry Plane z = 0

The 2-D flow will develop in the symmetry plane z = 0 when a cavity of in-

finite span is used and Taylor-G~rtler instability associated with a rotating flow is

neglected. Numerous 2-D simulations are available. Examination of the 3-D flow

pattern in this plane will reveal and compare the fundamental differences between

the symmetry-plane results for 3-D and 2-D flow.

The results are illustrated in Fig. B.10 using tangential velocity and contours of

normal vorticity w, in the symmetry plane, for the time instants t = 20, 25, 30, 35,

45 and 50.

As of t = 20, the flow pattern in the symmetry plane shows 2-D characteristics. A

primary vortex forms in the central region and three major secondary eddies near the

upper back-wall, lower back-wall and lower front-wall. The three-dimensional effect

has not yet influenced the flow in this plane.

Between time t = 20 and t - 25, a threshold has evidently been past. The

flow pattern at t = 25 clearly demonstrates the 3-D effects. Three spanwise 'jets' in

the positive z-direction, representing the Taylor-G6rtler-like (TGL) vortices, impinge

onto the symmetry plane. They interact with the already-formed primary vorte:- and

the three seconday vortices in the symmetry plane and drastically change the flow

pattern. It is seen that these three spanswise streams are, respectively, near the three

secondary vortices in the symmetry plane, with the one near the lower front-wall

being the strongest. This suggests that the three-dimensionality is strongest near

the wall and three secondary eddies. It follows that these effects have resulted from

the relatively large shear stresses and adverse pressure gradients in these regions. As

the secondary vortex near the lower front-wall and the primary flow above it are the
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strongest among the three secondary eddies in the symmetry plane, the generation

and transport of the 'streamwise' vorticity, namely, the vorticity with its axis aligned

approximately with the primary (dominant) flow direction, is expected to be the most

significant. The interference of the spanwise motion reshapes the flow characteristics

in the symmetry plane, enhancing the momentum transfer in some region and de-

pressing it in others.

As the flow evolves to t = 30 and, further, to t = 35, the effects of three-

dimensionality become more obvious and significant, particularly near the lower front-

wall. It is noted that the spanwise stream near the lower front-wall vortex is moving

towards the front wall. This reflects the fact that the size of the secondary vortices

near the lower front-wall is decreasing with tha increase of the spanwise motion during

this period. It suggests that the streamwise vortices are generated and transported

in such a way that they adjust themselves to the strength of primary flow and the

location of the separation. Experimental results of Prasad et al. (1988) have also

shown this strong interaction between the secondary eddies and the TGL vortices.

It should be noted that the mesh in the central region of the symmetry plane is not

refined enough to resolve the shear layers that develop there at these two times, as

shown by the vorticity contours.

At t = 45, the 3-D pattern is not as significant as seen during t = 25 - 35. This

reveals the unsteady nature of the TGL vortices. At t = 50, the 3-D flow pattern

takes on a different look. The primary flow near the bottom wall is more leveled.

A saddle point has formed near the lower back-wall as a result of the interaction of

this flat primary flow stream, the back-wall and spanwise motion of the fluid. The

spanwise motion at this stage near the lower front-wall is not as strong as at t = 35.

Although the above analysis deals with the flow structure in the symmetry plane,

the emphasis has been stressed on the interaction of the spanwise motion (streamwise

vortices) with the flow-field in the symmetry plane. The flow pattern in the symmetry

plane is completely different from that of 2-D simulations. Spanwise motion of the

fluid evolve and interact actively with the primary and the secondary flows in the

symmetry plane (as well as all x-y planes).

Vertical Spanwise Planes x = 0 and x = .265
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The flow in the vertical spanwise planes (y-z planes) is solely due to three-

dimensionality, namely, the end-wall effects and the Taylor-instability mechanism.

Prasad et al. (1988) has shown that a sufficiently larger spanswise aspect ratio is also

a necessary condition for the existence of TGL vortices. The experiment of Koseff

and Street (1984) indicated that unsteady nature of TGL vortices were obvious for

the cavity with a spanwise aspect ratio of 3 : 1.

For separated flows with end-walls in the spanwise direction, it is known that "cor-

ner vortices" appear near the end-walls. These vortices are created by an adjustment

of the shear and pressure forces acting on the recirculating fluid to the no-slip condi-

tion imposed by the solid boundaries (Ref. [B.41). The spanwise motion of the fluid

within the secondary eddies in the x-y planes is driven by these corner vortices. Ob-

servations of the flow pattern in the symmetry plane in the previous sub-sub-section

have confirmed that the TGL vortices are very strong near the wall and the secondary

eddies in the symmetry plane.

Figure B.1l depicts the normal vorticity (w..) contours in the vertical spanwise

planes x = 0 and x = .265 for times t = 20 through t = 50. It is clearly seen that

the corner vortices have originated near the end-wall z = -1 at t = 20. The vortices
2

also began shedding towards the center region. But they have not yet penetrated

into the symmetry plane (z = 0). This is consistent with the observation of the 2-D

flow structure in the symmetry plane in the previous sub-sub-section. Although some

vortices are present near t•'e symmetry plane at this stage, they are not strong enough

to affect the flow pattern in the symmetry plane.

At t = 25, one and half pair of TGL vortices are seen near the symmetry plane.

Three-dimensional effect has arrived at the symmetry plane. The 2-D pattern in the

plane has been disrupted. It is true, as anticipated, that the TGL vortices at x = .265

are stronger than those at x = 0 since the location x = .265 is in the vicinity of the

lower front-wall secondary eddy in the z - y plane. It is also observed that there are

some very weak vortices in the middle sub-section of the plane, suggesting that the

vortices near the symmetry plane might have transported from 'upstream' locations

like x = .265, where the TGL vortices developed earlier. It is interesting to note

that one and half pair of vortices also appear near the top surface and that their
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axes align with those near the bottom wall approxmately in the x-y planes at x = 0

for t = 25. This may imply that the primary vortex in the x-y planes possesses a

structure called a 'cell' observed experimentally by Mochizuki et al. (1990) at this

stage. The 'cell' consists of a pair of counter-rotating vortex rings of the primary

vortex and the norseshoe-like secondary vortex ring near the bottom wall. However,

this structure is not obvious at later times. This is due to the fact that the experi-

mental setup employed a larger span (aspect ratio as large as 12) and lower Reynolds

number (Re = 1000). It is then concluded that the 'cell' structure will not sustain

for the cavity with an aspect ratio 3 : 1 at Re = 3200.

The sizes and the locations of the streamwise vortices change with time, as pre-

sented by the vorticity contours in those two planes through t = 50. The number

of vortices are increasing in both planes. The vortices in the plane x = .265 seem

stronger than those in the plane x = 0. At the same characteristic time, there are

more pairs of vortices in the plane x = .265 than in the plane x = 0. It is shown

again that streamwise vortices near the secondary eddies in x-y planes are stronger.

Unsteadiness of the flow at this Reynolds number Re = 3200 is again vividly illus-

trated by the streamwise vorticity changes.

SUMMARY

A multigrid distribu.ive Gauss-Seidel (MG-DGS) method has been developed and

successfully applied to the simulation of unsteady three-dimensional incompressible

flow i=_ the shear-driven cavity. The MG-DGS method for the velocity problem has

proved to be efficient and robust. The DGS relaxation scheme itself is very efficient

for smoothing the high-frequency errors for the first-order elliptic system for the ve-

locity problem. For uniform grids, conivergence rate of about 0.5 is achieved using

accommodative multigrid procedures.

Three-dimensional shear-driven cavity flow at Reynolds number Re = 3300 has

been simulated using the presently developed MG-DGS scheme together with an

ADI algorithm. The longitudinal vortices occurring in cavity-flow experiments have

been captured numerically. Driven-cavity flow with finite span is definitely three-

dimensional. End-walls play a dominant role in creating streamwise vortices (TGL

vortices). The streamwise TGL vortices interact strongly with primary and secondary
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vortices in the x-y planes. The evolution and transport of streamwise vorticity alters

the structure and sizes of the primary and secondary vortices in the symmetry plane

(and all other x-y planes). The flow is persistently unsteady for Re = 3200 through

t = 50. The flow structure observed in the numerical simulation is in good agreement

with available experimental observations.
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2.C Adaptive Grid Technique for Higher-Re Flows

2.C.1 Abstract

The objective of this study is to efficiently simulate vortex-dominated highly unsteady flows.
In such flows, the locations as well as the extent of the regions requiring fine-mesh resolution vary
with time. A technique has been developed to simulate these flows on a temporally adapting grid
in which the adaption is based on the evolving flow solution. The flow in an axisymmetric
constriction has been selected as an illustrative problem. The multiple and disparate length scales
inherent in this complex flow make this problem ideally suited for evaluating the adaptive-grid
technique. Adaption is based on the equidistribution of a weight function, through the use of forcing
functions. The significance of this is that the method can be implemented into existing flow-analysis
systems with minimal changes. The grid-generation equations developed are viewed as grid-transport
equations. The time-dependent control functions perform the role of the convective speed in this
transport mechanism. The equations provide the efficiency and flow tracking capability of parabolic
equations, while maintaining the smoothness of computationally expensive elliptic equations. The
efficiency and flow tracking capability of the approach is demonstrated for both steady and unsteady
flows.

2.C.2 Background

The use of appropriate coordinates in the mathematical formulation of a problem has a
dominant effect on the accuracy and computational resource requirements of analysis and numerical
simulation of fluid flow problems. In addition to requiring that the coordinates be boundary-
oriented, it is desirable that they also reflect some of the significant features of the flow. Traditional
grid-generation methods rely on the experience of the user and only partial a priori knowledge of
localized or transient physical phenomena which require a fine mesh for their accurate representation.
The objective of the present work is to develop an efficient flow-simulation technique, which
automatically resolves critical regions of widely disparate length scales. A major advantage of a
time-dependent mapping incorporating the evolving flow physics is its ability to cluster coordinate
lines only where necessary at that instant, thus reducing meshpoint requirements. This feature is
particularly useful for strongly unsteady flows, in which the same flow regions do not require fine
resolution at all instants of time. For flows requiring fine resolution throughout the domain, such
as intensely mixing turbulent flows, the advantage is greatly diminished, if not eliminated. Several
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review papers such as by Thompson (1985), Eiseman (1985) and Anderson (1987) present
applications where significant improvements in accuracy and efficiency have been obtained through
the use of adaptive-grid procedures. Many of the procedures require the solution of elliptic systems
for each grid regeneration, as done, for example, by Kim and Thompson (1990) and in the
variational approach of Brackbill and Saltzman (1982), rendering the procedure rather costly for truly
transient problems. Bockelie (1988) and Trompert (1990) have developed techniques for transient
problems based on iterative procedures requiring multiple grid subdivisions for each grid
regeneration or time level advancement. The present adaptive-grid technique draws on the error-
equidistribution concept of Anderson (1987), together with the widely used Poisson generation
system of Thompson (1974), with the important modification that the equations governing the grid
evolution are parabolic in time. These grid-transport equations fit well into the flow solution
procedure and allow grid regeneration at every' time level, with reasonable computational
requirements.

In the following sections, the equations governing the flow are expressed in generalized time-
dependent coordinates, and the grid-transport equations and weight functions are derived. The
numerical procedure is described briefly and results are presented and discussed for a model problem
of an axisymmetric internal flow.

2.C.3 Flow Governing Equations in Generalized Time-Dependent

Coordinates

The present analysis considers time-dependent flows of incompressible, Newtonian and
constant-viscosity (P) fluids. Therefore, the incompressible unsteady Navier-Stokes equations are
the appropriate governing equations. Written in terms of the vorticity vector w and the velocity
vector v, these equations consist of a temporally parabolic vorticity-transport equation given as

a__ + (.v)-4 = (t.V) V - - (VxVX6), (C.1)
at Pe

with the following kinematic definition for vorticity:

(Z = Vxi. (C.2)

Equations (C. 1) and (C.2) have been non-dimensionalized using LR as the characteristic length, UR

as the characteristic speed, LR/UR as the characteristic time, and UR/LR as the characteristic unit of
vorticity. The Reynolds number, Re, is based on UR and LR to be defined later for the flow problem
studied.

The axisymmetric flows considered involve only two independent spatial dimensions. Hence,
the mass-conservation equation is identically satisfied by the introduction of the Stokes stream
function, 0, related to the local velocity vector as
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SV-- , x 3 (C.3)

where P is the fundamental contravariant base vector locally normal to the (x,r) meridional plane,
(Fig. 1).

The governing equations (C. l)-(C.3) are in general vector form. For application purposes,
a coordinate system must be selected and Eqs. (C. 1)-(C.3) represented in scalar component form.
The boundary-oriented time-dependent 'computational coordinates' (•l,•2,•3,7)to be employed are
defined through an admissible coordinate transformation T. The implementation of axisymmetry is
simplified by using a transformation of the following form,

x = xW, V, 2 ,T)
x2 = Z(1 &1,.r)cos(&3) (C.4)
X 3 = zr(&', t',T)sin (ý3).

The physical space is represented by the basic Cartesian coordinate system, (x',x 2,x3) or (xy,z),
while •t and t2 represent the generalized curvilinear coordinates in a given meridional plane, and Q'
represents the transverse or azimuthal coordinate 0 describing the various meridional planes, (Fig.
C.1).

In terms of the stream function defined in Eq. (C.3), the definition of vorticity given by Eq.
(C.2) expressed in generalized coordinates (Osswald [1983]) becomes:

V__ 81 9-g2 8&2 _22 2a,) + g(3_( a*I_ g ')] =-_20 (C.5)

where

3 'X .

-E ( VAL - 2 )(- ) I g = det(g1 ,j). (C.6)
kC-i ati aTc

The defining equation (C.5) for w' constitutes an elliptic partial differential equation governing the
development of the axisymmetric-flow stream function.

The vorticity-transport equation, Eq. (C. 1), expressed in terms of the generalized coordinates
and written in strong conservation-law form, is as follows (Thornburg [19911):

Equations (C.5)-(C.7) comprise the flow governing equations in generalized time-dependent
coordinates. The next section presents the grid-transport equations used to define the coordinate
transformation given by Eq. (C.4).

2.C.4 Grid-Transport Equations

To facilitate the determination of accurate flow solutions, the physical domain of arbitrary
shape is transformed into a computational domain of regular rectangular shape, such that a uniform
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computational mesh corresponds to an appropriately distributed physical grid. The goal is to
incorporate the developing solution variables into the evolving transformation such that the available
grid points are distributed in a manner that represents the physical solution with the 'best' possible
accuracy. This leads to the search for the relationship between the developing physical solution and
the corresponding grid distribution. Unlike the well defined conservation laws governing fluid flow,
there is no unique physical law governing the relationship between the solution and the best grid.

The requirement of strong smoothing properties and tendency towards uniformity suggests
that a law elliptic in nature would be most appropriate. However, Laplace's equation, the simplest
elliptic equation, provides no control over grid spacing. Grids generated by Poisson equations
achieve non-uniform spacing enforced by the non-homogeneous terms, called forcing functions in
this context; for examples, see Thompson (1985b). To develop a time-dependent transformation,
these forcing functions can be based on the evolving flow solution. For each time step, grid
regeneration would require the solution of an elliptic system. This does not seem practical for a truly
unsteady flow situation.

For unsteady flow problems, such as the one considered in the present study, the flow-
transport equations are parabolic in time and elliptic in space. Thus, a parabolic law governing the
grid motion, that could be integrated in time along with the flow transport equations, would fit well
with the solution procedure. Grid generation methods based on parabolic systems provide
computational efficiency, but often sacrifice grid smoothness and control over clustering.

Ghia, Ghia and Shin (1983) developed a grid generation system by setting to zero the
coefficient of the convective term in the two-dimensional Navier-Stokes equations in the transformed
plane. The equations thus obtained have the form of a transport equation. Their procedure then
employed the time-dependent method in order to march both the flow and the grid equations to
steady state. In that work, the flow velocities were used to drive the grid movement. It has been
recognized (Anderson [19871) that the Poisson equation of Thompson (1974) in the transformed
plane can be rearranged into a transport-equation form by the addition of a temporal derivative.
Therefore, the grid equations are written as follows:
The time-dependent control functions perform the role of the convective speed for the grid-transport
mechanism. This allows the grid to be advanced in time, along with the parabolic flow-transport
equation. The grid equations are dynamically coupled with the evolving flow field through the P and
Q terms.
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-J2 CPx + QX+ + x, Mt - 2pOx,,, + (C.8)
-J 2 [Pr( + Qr. + r] = r,, - 2Pr(, + yr,,.

Approximate Equidistribution through Forcing Functions

The equidistribution of a weight function on a mesh is the main concept of the present
adaptive grid scheme. It has been recognized (Anderson [19871) that a one-dimensional
equidistribution law may be written as a Poisson system,

xt + PxI = 0, with P - (C.9)
w

Using variational calculus, equidistribution laws may be similarly written for higher dimensions. In
order to simplify the equations and reduce the computational requirements, the problem is viewed
as a series of one-dimensional equidistribution schemes. The individual forcing functions are
combined to yield the forcing function for multiple dimensions as

pk _ k = 1,2,3. (c.o)
w

Equations (C. 8) and (C. 10) provide an approximate equidistribution law based upon the individual
weight functions. The development of the weight functions for the individual coordinate directions
is described in the following section.

Derivation of Weight Functions

Grid spacing is inversely proportional to the weight function, and hence, the weight function
determines the grid distribution. The weight function used in the present work is an approximation
to the truncation error. Determination of this function is one of the most challenging areas of
adaptive grid generation. It is believed that the function developed in the present work represents
a significant contribution in this area. For a kl'-order accurate simulation, the leading term in the
truncation error for convective-like derivatives is of the form hk 01k1), where h is the local mesh
spacing, 0 is the solution variable and 0k+') is the (k+ 1)" derivative of 0; similarly for diffusion-like
derivatives it is of the form hk 0(k+2). If a flow simulation is to benefit from non-uniform cpacing,
the flow must contain regions of non-uniform derivatives. An equidistributional scheme will result
in non-uniform spacing when 0(k+ " varies over the solution domain. Non-uniform spacing will lead
to the greatest benefit when the variation in 0(k+ 1) is largest. This suggests the use of derivatives
in developing the weight function. Evaluation of higher-order derivatives from discrete data is
progressively less accurate and subject to noise. However, variation in the derivative •0(+) implies
that lower-order derivatives also vary. In fact, if o0,+') varies rapidly, 0k can be large. When ¢0,+'
varies widely, the lower-order derivatives must be non-zero in the vicinity of wide variation, and are
proportional to the rate of variation. Therefore, it is possible to employ some lower-order
derivatives as a proxy for the truncation error.
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Experience with flow simulation also sheds light on flow regions requiring fine resolution.
Thus, Flow regions of large gradients require finer resolution than more uniform flow regions, as
can be deduced from the above discussion. Also, regions of large solution variable curvature, which
necessarily occur between regions of high and low gradients, require resolution. Many researchers
have successfully employed weight functions composed of solution variable gradient and curvature
(Anderson (1987], Thompson [1985]). Ghia, Ghia and Shin (1983) have clearly demonstrated the
"importance of properly resolving regions of lrge solution variable curvature for some model
problems. The present weight functions employ higher-order derivatives of the physical velocity
variables u and v through the derived variable of vorticity. The choice of vorticity is logical, as
vorticity provides a physical description of the rotational intensity of the flow. One difficulty in the
use of vorticity for constructing the weight function is that it may vary over several orders of
magnitude. This can result in a grid equation system that is very stiff and, hence, difficult to solve
numerically and, in fact, has historically limited its application. In addition, important information
can be lost as derivatives in regions of large vorticity swamp important derivatives in regions of
lower vorticity, much as the 'convective' terms of a transport equation can swamp out important
diffision terms at higher Reynolds number. The newly derived weight functions overcome these
difficulties by an appropriate normalization procedure, resulting in well behaved grid equations as
well as adaption in lower vorticity regions that demand fine-mesh resolution for accurate numerical
simulation.

The weight functions have been developed using a component-by-component approach. Each
component has been designed to increase grid clustering in regions where a certain flow situation
occurs. The component-by-component approach also facilitates the inclusion of additional terms, if
the need arises in future studies. The weight functions formulated are as follows:

(Wrk).

k,' 1.0 + ' + b(Ai).

TJT~T1Z1-((A)lk).j~
Si, j(C.11)

(GW(*(k) Lj

+ ck i~ j k = 1,2.

( a ,) j

The first term is the constant 1.0 and is employed to ensure that the weight function is always non-
zero positive. A zero weight function would imply infinite grid spacing. If the weight function were
to become negative, equidistribution would require a negative volume of the computational cell. The
second term is the normalized magnitude of the vorticity and results in grid clustering in regions of
large vorticity, or large velocity gradients. This term does not account for resolution needed in
regions of large vorticity gradient or slope but small vorticity magnitude. Such a region can be a
source of significant truncation error. In fact, this is often the case in unsteady or higher Reynolds
number flows.

The second term is the normalized relative derivative of the vorticity with respect to the
coordinate ýk. The contribution of this term is from regions of large vorticity gradients that need
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resolution, such as those adjoining high-vorticity regions..

The third term is the normalized relative second-order derivative of vorticity with respect to
the coordinate t'. The use of this term is an attempt to resolve regions of large vorticity curvature
near the periphery of large vorticity-gradient regions. The use of the relative derivative is important
to eliminate domination by large vorticity gradients present in high-vorticity regions. Thus, the
relative derivative is a better measure of the local truncation error than the absolute derivative.

Evaluation of Weight Function Coefficients

The weight functions are determined by the vorticity distribution as well as by the coefficients
ak, bk, and ck, in Eq. (C. 11). A wide range of values for these coefficients has been tested. The
choice of values has been based primarily on numerical experimentation. In general, a fairly wide
range of values for these parameters yields acceptable results.

The contribution of each weight-function component is determined by its coefficients. A 10
percent contribution from the magnitude of the vorticity, 50 percent from the relative first-derivative
and 40 percent from the relative second-derivative of vorticity has been found to provide the best
resolution for the flows studied. This distribution determines the relative magnitude of a', a2 , b',
b2, c', and c2. Theoretically, the ratio of the minimum value of the weight function to its maximum
value is equal to the ratio of maximum cell volume to minimum cell volume. The present method
is approximately equidistributional and, as such, this relation is not exact. However, estimates of
the maximum and minimum values of the weight functions can be used to predict the ratio of
maximum to minimum cell volume. Henct, a limit may be placed on the maximum allowable cell
size variation. The present work uses a value of 200, so that

W) i _______ 200. (C. 12)
(Wi)MAX (Axi) rain

The massive grid migration necessary to maintain this theoretically optimum grid distribution in the
streamwise direction requires a time step much smaller than is needed to resolve the temporal scales
of the physical problem. This is not efficient. A trade-off exists between larger values and greater
adaption, versus overall efficiency. Stronger adaption produces greater grid-point migration,
resulting in slower convergence of the stream-function equation, as the initial guess is then further
away from the true solution. A reduction in time step may also be required for very large grid
movement. Thus, with the present adaptive method, and likely with others, the smallest possible
number of grid points may not necessarily lead to the greatest efficiency. For flows with widely
spaced and rapidly moving flow structures requiring resolution, such as a vortex-ring convecting
downstream, it is more efficient to use a few additional grid points and moderate adaption. Thus,
the parameters should be chosen such that the time step limitation is imposed by the time scales of
the flow, and not by the degree of grid movement. These comments apply primarily to the
streamwise direction, where the large extent of the domain permits grid points to travel large
distances. The confined nature of the geometry in the normal direction, combined with the spatially
elliptic equations governing grid movement, tends to moderate movement in the normal direction.
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Hence, for the current work, the coefficients are scaled by a factor of 1000 in the streamwise
direction. The values employed for the weight function coefficients are a' = 20, bW = 100, cl =
80, a2 = .02, b2 =.1 and c2 =.08. For the family of geometries studied, simulations indicate that
the values of these coefficients can be held constant, independent of Re, Ar or streamwise extent of
physical domain.

The most important coefficient in the expression for the weight function is that of the first-
derivative. The contribution of the vorticity magnitude term is primarily in regions of large flow
acceleration and/or shear, such as near the throat. The importance of this term decreases as the
unsteadiness of the flow increases. The first-derivative term, in conjunction with the magnitude, has
been sufficient to resolve all but the most severe cases. For the latter, additional resolution was
required in regions of large vorticity curvature. Therefore, the second-order derivative term was
implemented to successfully resolve these regions. This is particularly important for the near-wall
region, where resolution is important but both magnitude and first derivatives of the solution flow
variables may be moderate. Also, this term was found to be crucial for appropriate resolution of the
region of low-speed flow along the wall and upstream of the constriction and, to avoid contamination
of the flow downstream of this region.

2.C.5 Model Internal Flow Problem

The geometry of the test problem chosen was a family of axisymmetric constrictions
described by a cosine function, and is illustrated schematically in Fig. C.2. For this geometry,
experimental data is available for the Reynolds number range 500-15,000 and for constrictions of
25-75 percent by area (Ahmed and Giddens [19931 and Deshpande and Giddens 119801). The
asymptotic state of the flow is steady or unsteady, depending upon the severity of the constriction
and the value of the Reynolds number.

Numerical Solution

Equations (C.5), (C.7) and (C.8) are written in computational coordinates. The implied
transformation maps the general region of interest R in the physical (x,r) plane, to the unit square
o3 in the computational plane defined as 0 A [(Q,71) 1 0_• •_l1, 0_<q71]. A uniformly spaced
finite difference grid A of size (N x M) is employed to discretize the unit computational region
0.

The three coupled equations, two for the grid and one for the vorticity, are integrated in time.
The grid equations share some of the 'stiffness' of the flow transport equations through the velocity-
like forcing functions P and Q. In fact, the transformation may be viewed as transferring the
difficulty usually encountered in solving the flow equations, to that now experienced in solving the
grid equations. The 'stiffness' of the flow equations is reduced through the scaling of the
transformation metrics appearing in their coefficients. The equations are discretized and solved
numerically. Time derivatives are approximated using a first-order accurate backward difference.
The discretized non-linear terms are quasi-linearized. Extrapolation in time is employed to generate
an initial guess for the iterative solution of the stream function. In addition, a local iteration
procedure is employed to update the coefficients of the 'convective' terms in the vorticity-transport
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equation. For further details of the procedure, see Thornburg (1991). The location and spacing of
the mesh points, not the accuracy with which the grid equations are evaluated, affects the accuracy
and stability of the discretized flow equations. Therefore, in order to produce a numerically stable
solution to the grid equations, the idea of upwind differencing is used in these equations. Upwind
differencing of the flow equations adversely affects the accuracy of the flow solution through the
introduction of numerical diffusion, which lowers the local effective Reynolds number. However,
this very property is beneficial for the grid equations. It is desirable for the grid to vary smoothly
near regions of large gradients where grid clustering occurs. Thus, the numerical diffusion
introduced by first-order upwind differencing of the grid equations not only adds to the stability of
the grid-transport process, but actually improves the grid quality, and, hence, the flow simulation
accuracy. The biased differencing is based on the velocity-like P and Q forcing functions.

The source terms of the discretized equations require the values of P and Q at discrete
locations, and must aiso be evaluated from discrete weight function data. The weight functions
contain values of the vorticity field at time level (n+ 1) and represent the dynamic coupling between
the grid and the flow solution. The simplest technique to decouple the equations would be to lag the
vorticity appearing in the grid forcing functions. This approach was implemented and found to be
less than optimal. A very small time step was needed to adequately track the temporally evolving
flow even for moderate Reynolds number cases. Another contribution of the present work lies in
addressing this shortcoming, by using temporal extrapolation to obtain a guessed value for vorticity
oP,* 1, as:

j= 2 ,j - + O(Ar) 2 . (C.13)

These extrapolated values for the vorticity are used to evaluate the forcing functions.

High-Reynolds number flows often exhibit localized regions of intense variation of vorticity.
Hence, the variation of the weight function can become severe and localized in this region, resulting
in rapid localized variation in grid spacing. The interval of influence of these localized regions is
increased by smoothing the forcing functions, resulting in smoother variation of mesh size.

In order to control the truncation error associated with the grid speed terms, as well as
provide stability for the grid evolution, it is necessary to control the magnitude of grid movement.
The unsteady nature of the present flow at higher Re produces vortical structures which convect out
of a finite solution domain. This can cause excessive and unnecessary grid movement at the outlet,
because as a structure leaves the solution domain, its associated grid points rapidly migrate to the
next structure upstream. In practice, it was found beneficial to create a buffer region at the outlet
for the grid solution. The buffer region is created by exponentially damping the forcing functions
to zero over the last 25 points of the domain in the streamwise direction. The buffer region is used
to eliminate the rapid grid movement in this region of relatively quiescent flow, thus removing the
time step constraint imposed by this movement.

Overhead Associated with Adaption
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For the unsteady flow cases examined, the adaption procedure is enabled throughout the
simulation. By monitoring the residence time of each subroutine associated with the adaption, the
direct overhead is found to be of the order of 15-30 percent for the unsteady cases studied. The
overhead for steady-flow cases is much less, as the adaption procedure is active for only a small
fraction of the total simulation time. The iterative method employed for the steady problems studied
exhibits rapid convergence initially. The grid-transport eciations do not represent physical laws, and
hence, the level of convergence required for acceptable accuracy is much less than that for the flow-
transport equations. For steady-flow or even quasi-steady flow, no further accuracy is achieved in
the flow solution by adaption after the general flow structure has developed and the grid adapted to
it. Hence, for steady-flow calculations, the grid movement is stopped before a fully converged flow
solution has been achieved. For a steady problem where the initial transients are not of interest,
it seems wasteful to spend resources to adapt and resolve these transients. Therefore, the most
efficient procedure for steady-flow problems has been found to consist of starting the calculation with
some initial static grid and running the simulation until the gross structure has developed. Then the
adaption procedure is activated for approximately 50-100 iterations, and deactivated thereafter as grid
movement becomes small. This is also a sufficient number of time integrations for the adaption
procedure to sense and automatically resolve flow structures appearing due to the increased resolution
provided by the adapting grid in certain regions. The simulation is then continued, using the static
but adapted grid, to the desired level of convergence for the flow solution. This approach greatly
reduces the overhead of the adaptive procedure for steady-flow problems.

Resolution of Scales

The resolution of the length and time scales prevailing in a flow is the most important factor
for an accurate simulation. Time-accurate simulations of unsteady flow, such as those performed
in the present work, must employ a spatially constant time step. For the flows studied, it is believed
that the reduction in the required number of grid points due to adaption is greatest in the streamwise
direction, where the reduction has been as much as 50 percent. The reduction of points in the
normal direction is not as dramatic. The regions of intense flow gradients requiring normal
resolution travel over a shorter distance and their locations are easily predicted. For example, the
oscillating shear layer, which requires the greatest normal resolution, is confined to a location only
several times its thickness. In addition, the wall region always requires normal resolution. Using
this a priori information, an initial grid with a fairly efficient normal grid-point distribution can be
constructed, lessening the need for an adaptive procedure in this coordinate direction. Thus, the
reduction in the number of grid points required in the normal direction is estimated to be 20-30
percent, as compared with a static clustered grid, depending on the particular case.

Proper resolution of the time scales was a much more difficult problem than anticipated. The
time scales of the flows in the more severe geometries were very short. For the configurations
studied, the severity of the flow was primarily due to whe geometric configuration. The most
important consideration being the area constriction ratio (ACR), followed by the half-length (XSL),
over which the constriction occurred. Plots of the truncation error associated with the time
derivative, based on static grid cases, showed that the shear layer immediately downstream of the
obstruction exhibited the largest of these truncation errora and the shortest time scale.
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It is not straightforward to analyze the truncation errors associated with time derivatives for
moving- grid simulations and, hence, to determine if the AT used provides sufficient temporal
resolution for the method employed. The most reasonable method for determining temporal
resolution consists of carrying out several simulations with various time steps, constant for a given
simulation. Time-step independence suggests sufficient temporal resolution. For ACR = 0.75 with
XSL = 2.0, the flow with Re = 2000 has been analyzed extensively. This case was chosen for
study due to the fact that much experimental data was available for it. A simulation using first-order
accurate time discretization was performed, and progressively smaller time steps were employed until
successive calculations showed no qualitative variation. Time step independence was observed for
Ar < 0.001. In addition, a simulation using second-order accurate time differencing was also
performed for this case. No qualitative difference was observed between the two sets of results.
It is therefore believed that the first-order accurate temporal discretization with a time step of 0.001
provides adequate temporal resolution for this flow situation. This procedure is similar to varying
grid sizes to evaluate grid independence and, hence, spatial resolution. For less severe geometries
such as the one with ARC= 0.50, XSL = 2.0 and Re = 2000, the time scales are much less severe.
For this case, no qualitative differences were observed in the results using either first-order accurate
or second-order accurate temporal discretization, so long as the time step employed was smaller than
0.002. However, small scale differences were observed under quantitative analysis.

2..C.6 Simulation Results and Discussion

Results are presented for various constriction ratios anid Reynolds numbers. The severity of
the geometry triggers separation at very low Reynolds number. For example, for the configuration
with ACR = 0.75 and XSL = 1.0, separation occurs at a Reynolds number of 10 (Lee and Fung
[19701). The flows simulated are grouped in two categories. The first category deals with steady
flows, while the second deals with unsteady flows. The category to which a given flow belongs
depends on the values of the three parameters, namely, area constriction ratio (ACR), physical half-
length (XSL) of constriction and Reynolds number (Re).

Steady-Flow Results

A series of calculations were performed in order to validate solutions on non-uniform, non-
orthogonal grids and to demonstrate grid independence. The geometrical configuration with ACR
= 0.50, XSL = 2.0 and Re = 500 was chosen, due to the availability of experimental data for it.
The first result presented is a simulation with a large (450 x 45), essentially uniform, orthogonal
grid, and was undertaken to obtain a benchmark set of data. The grid as well as the vorticity and
stream-function contours are presented in Fig. C.3. It can be observed that the grid used for the
calculation is quite fine and should provide adequate spatial resolution. The grid is generated using
a Laplacian generation system, with orthogonality enforced on the boundaries. A second simulation
was performed with identical parameters, but with the inlet and the outlet locations placed 50 percent
further upstream and downstream (-7.5 < x < 15.0 vs. -5 < x < 10), respectively, and the grid
increased to (675 x 45), to maintain the same grid spacing as for the shorter configuration. For
subsonic flows, such as those studied in the present work, the importance of the placement of
inflow/outflow boundaries is well known. However, as no visual difference is observed in the results



of these two calculaLions, it can be concluded that the solution domain of the shorter configuration
is sufficiently long. Next, simulation results were obtained for the case of a (300 x 30) initial grid
and are shown in Fig. C.4. Comparing these results with the finer-grid results shown in Fig C.3,
it can be observed that the separation streamline is not as smooth for the coarser (300 x 30) grid as
for the (450 x 45) grid case. Further, it is noted that the reattachment point is not as far
downstream, nor is it as sharply defined as for the fine grid case. Hence, grid adaption was then
activated and the simulation continued in time. Figure C.5 clearly shows the grid adaption, as well
as the smoothness of the separating streamline and the regaining of the separation bubble length.

Two simulations with fewer grid-points were also performed in order to test the procedure
for yet coarser grids. Figures C.6 and C.8 present results for (100 x 20) and (50 x 15) fixed grids,
respecdively. The results were difficult to obtain; very small convergence tolerances were required
for the stream-function equation throughout the calculation. Stalled convergence, with oscillatory
behavior of vorticity residuals, was often encountered, necessitating an adjustment of the time step
and a restart of the calculation. Then, for both of these grids, the adaption procedure was activated
for 100 time steps and the simulation advanced to steady state. The results obtained using the
adaptive technique are presented in Figs. C.7 and C.9 for (100 x 20) and (50 x 15) adapted grids,
respectively. In both instances, the convergence behavior was improved, with the adapted grid
eliminating the need for user intervention. The accuracy of the simulation improved markedly with
the adaption. Separation and reattachment points became more sharply defined and the separation
streamline became more smooth. The vorticity contours show no visible difference for these
calculations, and hence, are not repeated for each grid size. The axial distribution of vorticity is
presented for two grid sizes, namely, (300 x 30) and (50 x 15) in Fig. C. 10. The variation due to
grid size is greatest in the vicinity of the separation point. The length of the separation bubble
gradually decreases as the number of grid points is decreased, reflecting the decreased resolution.
The (100 x 20) grid size provides satisfactory results; the contour plots presented differ only slightly
from the larger (30G x 30) adapted-grid results, in the region immediately surrounding the
reattachment point. The (50 x 15) grid size is believed to provide insufficient resolution even with
the adaption, as the separation streamline is non-smooth. However, the adapted grid is believed to
provide near optimal resolution for the available number of grid points.

The same geometric configuration was also studied with a flow Reynolds number of 1000.
Simulations for two grid sizes, namely, (300 x 30) and (100 x 20) were performed and the results
are presented in Figs. C. 11 and C. 12, respectively. The two sets of results agree well with each
other, demonstrating that the adapted (100 x 20) grid is adequate for this flow. The calculated
velocity profiles at various streamwise locations are compared with the experimental data of Ahmed
and Giddens (1983) in Fig, C.13. The agreement is close. For this flow situation, the flow is
indeed axisymmetric. It can be observed that for the steady-state flow results presented in Figs. C. I-
C. 12, the reattachment point is one of the most sensitive quantities with respect to grid size and grid-
point distribution. Table I summarizes the reattachment lengths calculated and compares the results
with experimental data for various configurations. The sensitive quantity of reattachment length
clearly benefits from the increased resolution capability of the adaptive procedure. It is observed
that the relationship between flow Reynolds number and reattachment length for this range of
Reynolds number is linear, as theoretically predicted (Smith [19771).

In summary, results for steady flow have been demonstrated to be grid independent. Various
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geometrical configurations with ACR varying from 0.2 to 0.89 and XSL = 1.0, 2.0 and 4.0 were
studied; none maintained attached flow for Reynolds number greater than 200. The grid-adaption
procedure has also been shown to re-distribute grid points, such that relatively coarse grids pro% ide
results comparable to those with much finer non-adapted grids. Typically, the calculations required
400-600 iterations for convergence of the vorticity to residuals less than I x 10M. In addition, the
grid adaption is activated fur only 100 of these iterations. Hence, the overhead for these calculations
is less than 10 percent. Further, the numerical simulation has nearly reproduced the available
measured velocity profiles.

Unsteady Flow Results

Simulation results are presented for two different flow Reynolds numbers for a geometric
configuration with XSL = 2 and ACR = 0.75 employing a (600 x 85) grid. These configurations
exhibit inherently unsteady flow. For Re = 2000, Figs. C. 14a-g present the grid, vorticity and
instantaneous stream-function co-,tours for various instants of time in the region of the obstruction,
while Figs. C. 15a-g present the same data corresponding to the region immediately downstream of
this location. The non-uniform adapted grid is obvious in the sequence of these figures. The
adaption is most apparent in the normal direction, with the largest clustering occurring near the shear
layer, as expected. The clustering in the normal direction gradually decreases with distance
downstream, as the fluid mechanics processes distribute the vorticity more uniformly in the normal
direction. The clustering near the wall to resolve the boundary layer is quite pronounced.

Grid clustering in the streamwise direction is less obvious, but analysis of the results
simulated using various values for the weight function coefficients, and hence, various grid
distributions, has indicated that the distribution attained is appropriate. The clustering is clearly
visible in the rapidly accelerating and turning region near the throat. Following this region, the
streamwise distribution of the grid is nearly uniform, up to approximately x = 5, as vortical
structures appear throughout this region. In the region 5 < x < 8, the streamwise distribution is
less constant with time, as pairing of vortical structures often occurs in this region. The distribution
varies from nearly uniform when several structures are present, to a more clustered distribution when
these structures have combined to form one larger structure. For x > 8, the streamwise distribution
is much less uniform, as discrete vortical structures have developed with regions of relatively smooth
vorticity between them. The difference between this region and the region immediately upstream
is that the former region always contains discrete structures ard, hence, a non-uniform grid.

Figure C. 16 presents the flow results for the region near the outlet. It is observed that, for
flow at the relatively low Re of 2000, viscous diffusion has smoothed the gradients of the vortical
structures as they convect downstream. The reduced vortical intensity of the flow is reflected in the
streamnwise sparsity of the grid in the downstream region.

Simulations were also performed for Re = 10,000. However, the time step required for
temporal resolution was such that tvaciing the flow tor any meaningful intervals of time was
computationally very expensive. Figure C. 17 shows the flow results for the region near the outlet.
For Re = 10,000, the flow structures convect quickly downstream, and hence, maintain their
intensity for a greater strearnwise distance. This is reflected in the finer spacing of the grid in the
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downstream region. It should be noted that the results presented for this configuration with Re =
10,000 are not completely resolved in time, particularly in the region near the shear layer. In
addition, it is believed that the axisymmetric assumption is no longer appropriate at this Reynolds
number. Currently, work is being undertaken in order to successfully simulate these higher Reynolds
number flows.

2.C.7 Conclusion

An automated flow-adaptive grid procedure for efficient use of grid points to resolve
temporally varying regions of high vorticity and high vorticity gradients and curvature has been
developed. The technique is based on the well known elliptic grid-generation procedures and
advances the grid in time along with the flow solution, as the current grid equations are parabolic
in nature. Therefore, the present technique has the advantage of being computationally more
efficient than a purely elliptic-equation-based technique. In fact, the grid-transport equations fit well
into unsteady viscous flow solution procedures. The procedure uses the most recent flow information
to adapt the grid, not information from previous time levels, and does not require interpolation. The
relatively small overhead associated with grid migration in the present method makes the technique
computationally practical for truly unsteady flow problems. The relative derivative contribution to
the weight function prevents regions of large vorticity magnitude from swamping regions of lower
vurticity which may also require resolution. This is necessary in order to resolve structures
downstream of the obstruction, where viscous diffusion has diminished the gradients appearing in
these structures. Finally, many of the existing codes employing elliptic grid-generation systems may
be modified to include the current adaptive grid technique. The equations combine some of the most
desirable features of several types of grid generators, without added complexity or computational
expense. They exhibit the efficiency and flow-tracking capability of parabolic equations, while
maintaining the smoothness of computationally expensive elliptic equations.

The use of the full unsteady equations combined with the moving grid capability make the
code very versatile, allowing the straightforward impleen'tation of procedures to handle pulsatile
flow and/or deforming boundaries. These capabilities are essential in studies of flow-structure
interactions as well as passive and active flow control. The capabilities developed here are also of
interest to the biomechanics community for the study of flow through flexible configurations.
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Section 6

STUDENT DEGREE THESES
AND DISSERTATIONS

M.S. Demree Theses

Blodgett, K.E.J., "Unsteady Separated Flow Past an Elliptic Cylinder Using the Two-
Dimensional Incompressible Navier-Stokes Equations," M.S. Thesis, Department of

Aerospace Engineering and Engineering Mechanics, University of Cincinnati,

Cincinnati, Ohio, March 1990.

Rohling, T., "Simulation of Chaotic Flows Past Airfoils at High Incidence Using the Unsteady
Navier-Stokes Equations," M.S. Thesis, Department of Aerospace Engineering and

Engineering Mechanics, University of Cincinnati, Cincinnati, Ohio, March 1991.

Melde, PF., "Investigation of Vortical Flows Over Slender Delta Wings," MS. Thesis,

Department of Aerospace Engineering and Engineering Mechanics, University of

Cincinnati, Cincinnati, Ohio, March 1992.

Ph.D. Deeree Dissertations

Thornburg, H.J., "An Adaptive-Grid Technique for Simulation of Complex Unsteady Flows,"

Ph.D. Dissertation, Department of Mechanical, Industrial and Nuclear Engineering,
University of Cincinnati, Cincinnati, Ohio, August 1991.

Huang, Y., "Numerical Solution of 3-D Navier-Stokes Equations in Vorticity-Velocity Form
For Incompressible Flows," Ph.D. Dissertation, Department of Mechanical, Industrial

and Nuclear Engineering, University of Cincinnati, Cincinnati, Ohio, March 1992.
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Section 7

TECHNICAL APPLICATIONS

Of the various CFD analyses developed, some were of direct use to the technical

community. Although to our knowledge, none of these analyses were used in the de-

velopment of any specific hardware, they are being used in preliminary design studies

by analysts in the industry. Some of these analyses are also being used by other

researchers at governmental laboratories to improve their analyses. The following is

a list of the CFD analyses and the organizations using them.

Analysis Organization

* Three-Dimensional Unsteady Navier Copeland Corporation

-Stokes Analysis Using Iterative Sidney, Ohio

Technique with Multigrid Acceleration

* Flow-Adaptive Grid Technique For McDonnel Douglas Research Center

Simulation of Unsteady Vortical Flows St. Louis, Missouri

* Flow Visualization Technique The Ohio Supercomputer Center

for Unsteady Viscous Flows Columbus, Ohio
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Appendix A

Figures for Section 2.A
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Far Field Boundary Fa Field Boundary
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S :Suction

I fnjection

Figure A.I: Inertial/ body- fixed coordinate systems and boundary conditions for flow
past an arbitrary maneuvering body.

1/4 c

Figure A 2: Depiction of forces and moments on the maneuvering airfoil.
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(a) Physical Plane (z-plane) (e) Circular Cylinder Plane

(Lift, R-plane)

Branch Cut P

X 1LSI

(b) Stagnation-Point Flow Plane (f) Complex Potential Plane
(Zero Lift, c-plane) (Lift, P-plane)

TEL {.b(LE)T TU L"E TEU

(c) Complex Potential Plane (g) Stagnation-Point Flow Plane
(Zero Lift, Po-plane) (Lift, i"-plane)

LSP, LE I TEU 1TEL LS~J LE TEU

1>

-2 0 . 2 POI 'Branch-Cut t

(d) Circular Cylinder Plane (h) Computational Plane ('-plane)
(Zero Lift, Z-plane) Infinity (t,1)

Infinity Infinity

SLSP, 

LE TE zl (00 __ _E

Branch Cut LE Branch Cut

Figure A.3: Representation of inviscid flow past symmetric NACA 0015 airfoil at
angle of attacr' (with circulation), in physical and various transformed planes.
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Figure A.4: Depiction of various zones for streamwise and normal 1-D analytical
cubic spline clustering transformations.
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Figure A.5: Grid distribution for a NACA 0015 airfoil with (444 x 101) mesh points.
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Constant Pitch-up Motion
NACA 0015 Airfoil, Re = 45,000

Computational Plane, C-Grid (444,101)

Vorticity Distribution (ADI Solution)

(a) Time = 1.50 a = 20.54a

Inc. by 10 to 80 then by 400
Max.: 1061.42 Min.: -3262.17 Infinity Zone

- 0.0

0.50

3 -c1.5
2 -i,0

a1 -3.0
0.00 0,S o. 0.0 o.g t.00

(b) Time = 3.30 a = 36.580

Inc. by 10 to 80 then by 400
Max.: 1511.13 Min.: -3483.83 Infinity Zone

,0 !

7 1.0

8 0.15

0.2s4 
__0._

3 -0.S

z -*.0

0.00 0. 0.0 0.7e1s 1.00 0

Figure A,6: Effect of grid stretching on far-field solution - vorticity cont')urs. (a)
= 20.54', (b) N = 36.58'.

sO



Constant Pitch-up Motion

NACA 0015 Airfoil, Re = 45,000
Computational Plane, C-Grid (444,101)

Disturbance Stream Function Distribution (BGE Solution)

(a) Time = 1.50 a = 20.540
* Dirichlet ( Body Surface, Infinity)

with Symmetric Condition ( Branch-Cut)
- Poisson Problem for BGE Solution

*x = 20.54o

Max. I4i! 0.266 at ( 0.817,0.32)
gos 8 0.26

7 0.20 * a=36.5P°
6 0.15
s 010 Max. IT, 1 0.355 at ( 0.601,0.41 )
4 0.08

3 OAOS
2 o0.0 * 0.005 a : 36.580

: .I -o0.06 0.083 5 Max.l11PD 0.355
0.00 0,25 am 0.,7 1.00 I-I

(b) Time =3.30 a =36.580
Computational Plane (,•

2 fInttyco) (1.0)

In-Coming Flow
9 0.20 ( a =00 )

S 0.0 0
4 -0.05

3 -0.10

2 -0.20
1 -0,35 Body S urface

Branch Cut

Figure A.7: Effect of grid stretching on far-field solution - disturbance stream function

distribution. (a) a = 20.54°, (b) a = 36.58'.
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* Metric Coefficient Distributions

*Computational Plane ( 12

*Grid Size; (444,101)

(a) GII Distribution

* Max.; 3.64E4

at (2.26E-3, 5.OE-3)
9 3.41 E4

8 3.41 E2 (9.98E-1, 5.OE-3)
eo.507 3.41 E1I

6 1.81 El Min. ; 3.63E-3
5 1.02EI

at (2.66E-1, 9.95E-1)0.254 6.81 EO

3 3.41E0 (7.34E-1, 9.95E-1)
2 1.81 EO
1 3.41 E-I

0.00 0.23 0.50 0.75 1.00 1.25

(b) G22P Distribution

0.75
0 Max.; 1.27E3

9 1.19E3 at (2.65E-1, 1.OEO)

eo.so 8 1.19E2 (7.35E-1, .OEO)
7 1.19E1
6 5.80E06~~~ Mi0E 0Nn."; 3.63E-3
5 3.48E0

4 1.1SEO at (1.OE-3, O.OEO)
3 8.88E-1 (9.99E-1, 0.OEO)
2 5.80E-1

1 1.19E-1

0.00 0.25 0.50 0.75 1.00 1.25

Figure A.8: Distribution of metric coefficients, for round-off error study (a) G 11, (b)
G220.
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* Dirichlet-Poisson Problem for BGE Solution

1 2
•Computational Plane (4 I, t 1)

* Truncation Error in Space ; O((A4 ),(A ))

(A41)2= 5AE-6, (A4 2)2 1.OE-4

* Grid Size; (444,101)

NORMALIZED F( 4'. ,) DISTRIBUTION NORMALIZED F( ,,¢ DISTRIBUTION

17 05If

o 550.4

A 1.0 A 1 0

9 0.9 9 09

7 063 0.2
6 0.5
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4 0.3 o 4 0 3
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0.0 , 0Z0

0.00 025 050 @0.71 . 1.2S 0.00 02r A ' %at

= -2snh~)[I-cos(2n$)] (sinhr(x(4-l)I I [I-cos(24~)] (1-Cos(2ne)]
4"4

ABSOLUTE ROUND-OFF ERROR DISTRIBUTION ABSOLUTE ROUND-OFF ERROR DISTRIBUTION

9 2.368-7 9 3 2SE-7

G 1.63E-7 8 1 63E-7
P7 127E-7 7 1 2?E-7
6 9.0860I 6 9 0SE-8

5 7.265-8 5 7.26E-8

a 5.45E- 0. 4 5.45E-8
3 1.821-8 3 i 82E-6
2 7.31E-9 2 7 31E-9
1 9.85E-13 1 9 8SE- 13

0000 0.2* @ON S 1.00 125 a * 0 ON 03 t

Max. Absolute Round-off Error - 2.91E-7 Max. Absolute Round-off Error = 3.46E-7

at (6.93E-1, 2.20E-1), (3.07E-1, 2.20E-1) at (3.12E-1. 4.10E-1), (6.88E-1, 4.10E-1)

Figure A.9: Estimation of accumulated round-off error distribution due to grid
stretching in Block-Gaussian Elimination solution.
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Grid Size; (330,75) (444,101) (544,121)

(a ie 35Max.; 1083.99 Max.. 1072.88 Max.; 1065.97
(a) ime 3 ~ Mii. ;-1085.80 Mini. -,-107 1.91 Mii. ;-1063.73

01) Time 4.5 M=x.; 1081.38 Max., 1069.51 Max. 1050.69
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(c)Tie .5Min. ;- 1082-17 Mii. ;-1045.72 Miii '-1050.52

(d ie 65Max., 1081.13 Max.; 1085.65 Max., 1044.52
(d)Tie .5Mii. ;-1072.96 Miii. -1055.44 Mini. -l084.1

-,Inc. by 4 toS 80 hen 40

~ K

(e) Time History of Lift Coefficient at ti

cfl~.t*,4,* AA

Figure A.10: Effect of three different grid distributions on asymptotic qow solution
at ot 0', for Re = 45,000, a'"- = 0.2. (a-d) vorticityv contours near TF. (e) tirTe
history of lift coefficient.



Grid Size; (330,75) (444,101) (544,121)

(a) Time1.501, a=15.960

Max.; 703.42 Max.; 1061.42 Max.; 827.00Min. ;-3089.45 Mit. ;-3262.17 Mm. :-3339.18

(b) Time=2.101, a=22.830
Max.; 2044.22 Max.; 2905.62 Max.; 3397.65
Min. ;-4137.37 Min. ;-4230.13 Min. ;-4482.60

(c) Time=2.501, at=27.41 0

Max.; 2352.86 Max.; 2588.88 Max.; 3096.37Min. ;-4386.53 Min. ;-4205.24 Min. ;4848.89

(d) Time=3.201, a=35.440
Max.; 1530.10 Max.. 1837.41 Max.; 2436.89
"Min. ;-3789.53 Min. ;-4429.03 Min. ;-3866.38Inc. by I to 10 then 40

Go 0

00

Figure A.11: Effect of three different grid distributions on flow past a NACA 0015
airfoil for Re = 45,000, &+ = 0.2 - contours of instantaneous vorticity.
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Streak Lines ONERA Experiment
WERLt (1976)

Vorticity Contours Vorticity Contours

Velocity Vectors Velocity Vectors

PRESENT MEHTA (1977)

Figure A.13: Comparison with numerical results of Meht (1977) and experimental
data, of Wer16 (1976) for NACA 0012 airfoil, Re=5,00U, k=1.0.
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cc18.57 0 cx 18.50 0

a 20.00 a= 19.99 0

a= 17.25 0 c~17.47 0

a= 11.110 cx= 11.36

mw~ ___

tx 4.4 0 cc 4.7 8

PRESENT MEHTA (1977)

Figure A.14: Comparison with numerical results of Mehta (1977) for NACA 0012
airfoil. Re=5,000, k=1 .0 - instantaneous stream function.
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cz18.57 0 C~18.50 0

ac= 20.0' 0 a= 19.99 0

az= 17.25 0 a 17.47 0

Q0

cc= 4.4 0 a= 4.780

PRESENT MEHTA (1977)

Figure A.15: Comparison with numerical results of Mehta (1977) for NACA 0012
airfoil, Re=5,000, k=1.0 - instantaneous vorticity contours.
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(a)

20 Comparison of Computed Lift Coefficients
NACA 0012 Airfoil, Re-5.000

*1.0

(b) Time = 2.601, a = 18--7- (Pitch-Up TMe =, 4.60ta1, 1.10(ithDon

14- Coefficient of Pressure Distribution
4.0 Coefficient of Pressure Distribution NACA 0012 Aafod. R"S.5O0O

NACA 0012 AirtaO,. A4.5,000 1.0

0.0 - -

r a

0.002S 054 070.00 0.00 02SIS 00 7S 10

Figure A.16: Comparison. with numerical results of Mehta (19771) and Sankar et al.
(1980) for NACA 0012 airfoil; Re=5,000, k=1.0. (a) CL vs. ci, (b) Cp - distribution
for a = 18.57' (pitch-up) and a = 11.110 (pitch-down).
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Time History of Lift Coefficient at a 00

S Constant pitch-up Motion

NACA 0015 Airfoil

SiRe 45,000
j V\

-o.2

Comparison of Lift Coefficient

2 3

Instataneous Vorticity Contours at a = 10.230

Start to pitch-up at N Max. : 637.55
M~in. : -2097.82 A e

CL :0.980 - -3I

MP W (0%)

Start to pitch-up at (c)
Max. : 548.50

Min. : -20831.6
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Statan to pitch-tip at (b)
Start to pitch-up at (d) MMax.: 498.01

Min. : 2166.54
CL :1.106

. LJII d AM&*(01%

Figure A.17: Effect of three different initial states on flow past a NACA 0015 airfoil;
Re = 45,000, &+ = 0.2 - vorticity contours, lift coefficients and unsteady circulation.
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ac = 24'

ot = 270

cc=36'

PRESENT (444,101) WALKER et al (1985)

Figure A.18: Comparison with experimental data of Walker et al.(1985) for flow past
a NACA 0015 airfoil; Re = 45,000, &~-0.2 - streaklines.
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(a)

4.0 Comparison of Computed and Experimental Lift Coefficients
NACA 0015 Airfo4i. Rea45,000
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• 2.0

P --- Experiment (Walker, et al., Reu47,500, 1985)
- Computed (Visbal and Shang, M0.2. 1989)

-4 Computed (Present. M.O)
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Figure A. 19: Comparison with experimental data of Walker et al.(1985) for flow past
a NACA 0015 airfoil; Re = 45,000, &+ = 0.2. (a) CL vs. a, (b) Cp - distribution for

a = 14.810 and a = 29.71'.
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(a) Tim e=2.101 ot =22.83 0 ".: - -
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(c) Time=2.601, o=28 56° .... - -
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(d) Timne=2.701, c•=29.71 0  --- "-.Z;" "" -

Figure A.21: Details of flow structure for NACA 0015 airfoil; Re= 45,000, &+ = 0.2.
- instantaneous vorticity contours for a = 22.83', 26.270, 28.56°, and 29.71°.
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Figure A.22: Effect of suction/injection for NACA 0015 airfoil; Re=- 45,000, and
6+ = 0.2 - unsteady circulation, velocity vectors and Cp - distribution. (i) CASE 1:
v,/Uo = 0.045, (ii) CASE 2: v,/Uo = 0.035.
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Figure A.23: Effect of suction/injection for NACA 00 15 airfoil; Re= 45,000, and 6 =

0.2 - instantaneous vorticity contours and wall vorticity. (i) CASE 1: v,/U~,,= 0.045,
(ii) CASE 2: v,/U,, = 0.035.
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Figure A.24: Effect of suction/injection for NACA 0015 airfoil; Re= 45,000, and &+ =

0.2- CL,CD,CM and LD. (i) CASE 1: v,/U,, = 0.045, (ii) CASE 2: v,/Ut,, = 0.035.
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* Time Histoiy of Control Model ftr SuctiorVlr~cti~fn Calculated Unsteady Cm~ircon
NACA 0015 Aawad PW.45ý000 NASA 00i1S AwIfiL go.&$ 000

CASE I A

I' 
04

004092 's14I(0 757-0 $94 ale)A-

Tim. MUIrw)Tm ra u./Cl

Velocity Vectors
0

Time =2.20 1, a =23.98 '4 C4*.Ef4 of Prow"u.Dinbwisa,

Time =2.301, a 25.12' 6 WWW c oazrOWMAwi

&mo wu W"a S .LAm"'

Time= 2.401, a= 26.270 Coaffid.Iws agPom imnb~Aolo

t .W Jpff VC 1 N .A4.f

CASE 1 CASE 3

Figure A.25: Effect of suction /injection for NACA 0015 airfoil; Re= 45,000,,&+ 0.2
and v,/U,, = 0.045 - unsteady circulation, velocity vectors and Cp - distribution. (i)
CASE 1: t, 0.05, (ii) CASE 3: t,, 0.15.
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Vorticity Contours

Time =2.101, a =22.830 111,NC OSý -

L40 I .S Ltý C,54

Time =2.201, a 23.98. . kfmfo at .t 0ý1o

IAr

0 W40 Voal ~ity0nbaA~oan
Time =2.401, a =26.127- '- -

CASEA3 1IAE

Figue A.6: Efectof sctio/injctio forNACA0015airfil; e= 4,00, a,= .

1: t 0 0.05 (ii)CASE3: tA0.15
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(a) (b)

011

CO Compatison of Computed Lift Coefficients Comparson of Computed Drug Coefficients
X ACA 00 11 AiloWl RO"5.0OO NAC.A 001S A,,00k tt-4,-oso

CASE 1
¶SCASE 3

11.020202.0 520 4 0

Angle at A~lota (05g.)2 AV Alta* (Dg)

(c) (d)

o.oo Comparison of Computed Moment Coefficients 6.. Comparison of Computed Uft/Drag Ratio
"ArA IS A~k o-450M ACA MIS1 Auido Po.8)O0

:-W4JpwA Sudwltn1 .dm

-WkWiiA sudioevIrld•u $ -
-e CASE I

CASE 3

-075 2-0
10.0 200 24.0 2.0 ¶60 220 240 2#0A.&lt dl Aft,* (Ow. a*,q G ~oN Artai (0@,1 ,

Figure A.27: Effect of suction/injection for NACA 0015 airfoil; Re= 45,000, &+ 0.2
and v,/U00 = 0.045 - CL, CD, CM and LD. (i) CASE 1: t" = 0.05, (ii) CASE 3: t0 =

0.15.
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Appendix B

Tables & Figures for Section 2.B
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x 25x 25 x25 33x323x.3 ,._ .9x49x-2.9

MO-OGS 0.4 0.9 2.5

BGE 32 135 1000

Table B.1: Storage requirement in megawords for MG-DGS and BGE methods for
velocity problem

U - Uniform Grid C - Clustered Grid

25x25x25 33x33x33 49x49x49

U C U C U

CPU .39 .58 1.04 1.31 2.64
S.C

WU 12.8 20.1 16.2 20.7 13.5

/1 ! .41 .57 .48 .58 42

On CRAY Y-MP

Table B.2: Some results for model problem using MG-DGS method
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MetodGE MG-Os
Grid BEM -)3

-4a -4

25x25x25 0.55x 10 0.2x i0

65x65x33 0.22x10-

a Cyoer 205 vectorized. c Uniform Grid. Ae.400. T- 025. t- 025. E-10

0 CRAY-YMP vectOrlZgd. 3 Clastereo Grid. AG-3300. r-19. t. 01, 9 0-."

Table B.3: Comparison of CPU time (sec/per grid/per time step) for BGE and MG-
DGS methods for cavity flow problem

Table 4 Sizes of Secondary Eddies in Symmetry Plane
at T=15, 17 and 21.

E0d 3d 2 di
Tlime (Ret, 3 Re,3OOO)

T=15 0 .0652 .3857

T=17 0 .1063 .3849 .36

T=21 .1082 .2091 .3831

- Read from Cfart

Table B.4: Sizes of secondary eddies in symmetry plane at T = 15, 17 and 21
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10 -'

2 --- G-0S•
25x2Ua

2S UJWOM cmo

2

2 --4 --jX
._I

x 10-'

0

10
z

10

00 o'6'd. 000.0.0 50.00 60.00 70.00
WORK UNITS

Figure BA : Convergence history for DGS scheme for model problem using (25 x 25
x 25) uniform grid.

10

:-02

2' SO-OCS
10 ~25s25z25 WONIJNWORMd MD

09=1

LLa

LL.
0 10
0

z

10

10

0.00 10.00 20.00 i0.60 40.00 50.00 60.00 70.00
WORK UNITS

Figure B.2: Convergence history for DGS scheme for model problem using (25 x 25
x 25) moderately clustered grid.
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10-

Cl2 I lcr-OGS

S10 "8Uz

0

z0 2

10-':

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00
WORK UNITS

Figure B.3: Convergence history for DGS scheme for model problem using (25 x 25

x 25) strongly clustered grid.

25.25.25 NON--UNWORi GR1O
(.[1 Re,400. m"o sup.025. T,.025

S-.

10,1

0uLJ

0

z

0.00 20.00 40.00 . 0.00 80.00 100.00 120.00

WORK UNITS

Figure B.4: Convergence history for DGS scheme for velocity solution of shear-driven

3-D cavity flow.
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Symmtry Plane MM

X2

Figure B.5: Configuration of 3-D cavity flow.

UQD~r 3urfGC. ore

U0stream Secondary downstrOOM beeodaefy
vorte ?OX vorttax

Figure B.6: Flow pattern in symmetry plane MM.

VR

PQ)(h

Figure B.7: Visualization of Ref. [B.141 for cavity flow (spanwise aspect ratio 3;1);
(a) symmetry plane MM; (b) lateral plane NN (x' 0.8). Re = 3200, time-averaged.
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- Ye

too

0.0

1.0

"to

x ~T.11

, IV0.0 1. 1.00

Figure B.8: Simulation results for cavity flow (spanwise aspect ratio 3:1) in symmetry
plane MM; (a) velocity vectors; (b) vorticity contours. Re = 3300, T = 15, 17, 21.

10

x -T-1

100

0.0

0.0 1. a. 0.0 1'

Figure B.9: Simulation results for cavity flow (spanwise aspect ratio 3:1) in lateral
plane NN; (a) velocity vectors; (b) vorticity contours. Re = 3300, T = 15, 17, 21.

108



.,flex

C C N

-'Nrk k// -1QN ""U0f:>c

L\;4

Figur B.0 Tagnta ~velocity b~ vecto plt an nomlvotc cnor nsm

mety lan z= 0fo t 2, 2, 0, 5,45,50

'4 *-, 109



X=O X=0.265

t=295

e "-

G t=30

Figure B.11: Normal vorticity contour in vertical spanwise planes x =0 and x=
0.265 for t = 20, 25, 30, 35, 45, 50.
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X=O X=0.265

( t=35

I~~~ 1 t, ,

t45

d2 iS

62t=50

Figure B.12: Normal vorticity contour in vertical spanwise planes (cont'd.) x = 0

and x = 0.265 for t = 20, 25, 30, 35, 45, 50.
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Appendix C

Table & Figures for Section 2.C
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Source Reettachment point location X(
ACR - 0.50. XSL - 2.0

Experimental data of Ahmed and GIddens (1983) R M 4.5

Present Computation, (300 x 30) Fixed grid 4.2

Present Computation, (300 x 30) Adapted grid 4.45

Present Computation, (100 x 20) Adapted grid 4.2

Present Computation, (5s x 15) Adapted grid 4.0

Experimental data of Ahmed and Glddens (1983) w 5.5

Present Computation, (300 x 30) Adapted 5.4

Experimental data of Ahmed and Giddens (1963) 6.0* (Not well defined)

Present Computation, (300 x 30) Adapted grid 6.9

Present Computation, (100 x 20) Adapted grid 6.7

Table C.1: Comparison of reattachment length. ACR = 0.50, XSL = 2.0

^3

Meridional o n Pane fm o

1 1

1 2 3

x e

Figure C.I: Generalized axisymmetric coordinate transformation T.
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SREATTACBNiqT

(Steady)

IR~~n (t SEARATION4

x

Flow Direction

(Unsteady)

Figure C.2: Schematic of geometric configuration.

Re - 500 . (450x45) Grid Time r 32.333

VORTICI"Y CONTOURS: u, , 1710 ,,, -- 0.86

4

2

-. 0 -2.1 -12 -0.3 0.A 'S 2.4 33 4-2 5.1 s.0

X

t 0. INSANANOU STREA FUCTO COTUS .4
2
0

-3.0 -2.1 - 12 -0.3 0.6 S 2.4 3.3 42 S.6 60
X

INSTANTANEOUS STREAM bUNCTrON CONTOURS: ,S - 0.2.523

11

2
0

. 2.0 -2.1 -12 03 0. 6 I S 2.4 3.2 42 S.l sLO
K

Figure C.3: Steady flow, 50 % constriction by area, XSL = 2.0, (450 x 45) fixed grid,

Re = 500.
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Re .5(X , (30Wx3) Grid , Time-=50.0

VORTICrTy CONTOURS: ' 17,06 -0.86
1.0

R .6
.4

.0
-3.0 -2.1 -1.2 -0.3 0.6 1'S 2.4 3.3 4.2 5.1 6,0

.8
A .6 2

.4

.2

.0. . . . . . - - - - -

-3.0 -2.1 -1.2 -0.3 0.6 1.5 2.4 3.3 4.2 5.1 6,0
X

INSTANTANEOUS STREAM FUNCTION CONTOURS: #,o 0.2524

R .6__ _ _ _ _ _ _ _ _

.4

0.3. 21 - -0.3 0.6 1.5 2.4 3.3 4.2 5.1 6C0

Figure CA4: Steady flow, 50 % constriction by area, XSL = 2.0, (300 x 30) fixed grid,

Re =500.

Re.- SW , (300430) Grid , Time -74.5o

VORTICITY CONTOURS:. r. 17.15 =-08

.4
2.

-3.0 -2.1 -1.2 -0.3 0.6 1.5 2.4 3.3 4.2 5.1 6.0
x

Grid Skip 1

1.0

-31i -2.1 -1.2 -0.3 0.6 Is5 2.4 3.3 4.2 5.1 8.0

1.0 INSTANTANEOUS STREAM FUNCTION CONTOURS: 0.25M3

RA -.

.4
.2'

-3.0 -2.1 -1.2 -0.3 0.6 1.5 2.4 3.3 4.2 5.1 6.0

Figure C.5: Steady flow, 50 % constriction by area, XSL = 2.0, (300 x 30) adapted
grid, Re = 500.



Re - SW (100x20) Grid , Tlrme=-50.0

1.0 VORTIC1ITY CONTOURS. w, 17.14 . w, -0.92

R I6
.4
.2
.0

-3.0 -2.1 -1.2 -0.3 0.6 1.5 2.4 13 4.2 5.1 6.0
X

Grid

R .8

.4

.0
-3.0 -2.1 -1.2 -0.3 0.0 1.5 2.4 3.3 4.2 5.1 6.0

'C

INSTANTANEOUS STREAM FUNCTION CONTOURS: owt 0.2524
1.0
.8

R .6
.4

.0
.3.0 -2.1 -1.2 -0.3 0.6 1.5 2,4 3.3 4.2 5.1 6.0

x

Figure C.6: Steady flow, 50 % constriction by area, XSL = 2.0, (100 x 20) fixed grid,
Re = 500.

Re- 500 , (10OxO0) Grid , TIM - 87.0

1.0 VORTICrrY CONTOURS: , 17.11 -0,

R S6

2-
.0

-3.0 -2.1 -1.2 -o.3 0.6 1.5 2.4 3.3 4.2 5.1 600
x

Grdd
1.0
'a

R .6
.4
2

0-3.0 -2.1 .12 -0.3 0.6 1.5 2.4 3.3 42 $.1 6-0

INSTANTANEOUS STREAM FUNCTION CONTOURS: -0.2523

.2
A.I0

.3.0 -2.1 .1.2 -0.3 0.6 I.S 2.4 3.3 42 5.1 6.0
'C

Figure C.7: Steady flow, 50 % constriction by area, XSL = 2.0, (100 x 20) adapted
grid, Re = 500.
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Re .500 , (50x15) Grid . Tkwm- 70.00

VORTl~flY CONTOURS: =17.14 , =-1 .00
1.0
'8

R .8
.4
.2

-3.0 -2.1 -1.2 -0.3 086 1.5 2.4 3.3 4.2 5.1 6,0
x

1.0 Grdd

R .6
.4.8--I
.2

-3.0 -2.1 -1.2 -0.3 0.6 I's 2.4 3.3 4.2 5.1 6.0

INSTANTANEOUS STREAM FUNCTION CONTOURS: *,.-0.2524
1.0

.4
.2

-3.0 -2.1 t -2 -0.3 0.6 I.5 2.4 3.3 4.2 5.1 60

Figure C.8: Steady flow, 50 % constriction by area, XSL = 2.0, (50 x 15) fixed grid,
Re =500.

Re-5.0SW (S~xiS) Grid , TIMe - 142.20

voRT1Cfy CONTOURS: u =16.86 , w, - -0.91

.4

2.

-30 -2.1 .12 -o.3 0.6 1.5 2.-4 3.3 4.2 5.1 6.0

1.0

.4
.2
.0

-3.0 -2.1 -1.2 -0.3 0.6 1.5 2.4 1.3 4.2 5.1 6.0
x

INSTANTANEOUS STREAM FUNCITON CONTOURS: 0.- 0.2523

.4
2

0-10 -2.1 -1.2 -0.3 0.6 1.5 2.4 3.3 4.2 5.1 6.0

Figure C.9: Steady flow, 50 % constriction by area, XSL =2.0, (50 x 15) adapted
grid, Re = 500.
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25.0 AS) A Lv V .,IAI*o1 Ol o -19SA19.4
19.4 . 0 (50 X 15)

132 - - (300 x 30)

a .

2A6

-3.0' •

-2.0 -1.6 -11 -0.8 -. 4 0.0 0.4 0A - 12 IA 2.0

X

Figure C.10: Axial variation of wall vorticity, steady flow, 50 % constriction by area,
Re = 500.

Re - 1000 , (300x30) Grid , Time = 379.167

VORTICITY CONTOURS: u - 22.63 , . =-1.39

.0

-2.0 -1.1 -0.2 0.7 1.6 2.5 3.4 4.3 5.2 6.1 70
x

Grid
1.0

R .6
.4

.2

.0

-2.0 -1.1 -0.2 0.7 1.6 2.5 3.4 4.3 52 6.1 70

X

INSTANTANEOUS STREAM FUNCTION CONTOURS: ,. = 0.2548
1.0

-2.0 -1.1 .02 0.7 1.6 2.5 3.4 4.3 5,2 6.1 7.0
X

Figure C.11: Steady flow, 50 % constriction by area, XSL = 2.0, (300 x 40) adapted
grid, Re = 1000.
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Re m 1000 , (100x20) Grid , Time 139.0

VORTICrTY CONTOURS: , 22.61 , -1.42

4.4.0F

-2.0 -1.1 -0.2 0.7 1.6 2.5 3.4 4.3 5.2 6.1 7-0
x

Grid

R .6

.4

.2
.0

-2.0 -1.1 -0.2 0.7 1.i 2.5 3.4 4.3 5.2 6.1 7.0

x

INSTANTANEOUS STREAM FUNCTION CONTOURS: ,, = 0.254W
1.0

.0

-2.0 -1.1 -0.2 0,7 1.6 2.5 3.4 4.3 5.2 6.1 7.0
x

Figure C.12: Steady flow, 50 % constriction by area, XSL = 2.0, (100 x 20) adapted
grid, Re = 1000.

IOU I,.a Z42E # .41

2fR/R

MI

Figure C.13: Axial velocity profiles, 50 % constriction by area, XSL =2.0, (300 x

30) adapted grid, Re = 1000.
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Re - 2000 , (600x85) Grid , Time - 50.0

VORTICrTY CONTOURS: , 126.6, ,,, - -85,88

,6
A .6

.4

.2

.0
-3.0 -2.1 -1.2 -0.3 0.8 1.5 2.4 3.3 4.2 5. I 6.0

x

Grid Skip = 2
.0

A .6
.4
2
.0

-3,0 *2.1 -1.2 -0.3 0.6 1.5 2.4 3.3 4.2 5.1 6.0
x

INSTANTANEOUS STREAM FUNCTION CONTOURS: o,. - 0.4526
1.0

A
.2
.0

-3.0 -2.A -1.2 -0.3 0.6 1.5 2.4 3.3 42 S.1 e 0
x

a. 1 -50.0.

Re =2000 (600x85) Grid , Time = 50.2

VORTiCITY CONTOURS: , = 126.33, w, = .93.47
1.0

.4

.2

.0

-3.0 -2.1 -1-2 -0.3 0.6 1.5 2.4 3.3 42 5.1 a.0
x

1.o0 Grid Skip =2

.6
R .6

.4
2
.0

-3.0 -2.1 -12 .0.2 0.6 1.5 2.4 3.3 42 5.1 6.0
x

INSTANTANEOUS STREAM FUNCTION CONTOURS: *, 0.4617
1.0
.6'

.4

.2

.0
-3.0 .21 .-12 -0.3 0.6 1.5 2.4 3.3 42 5.1 6.0

x

b. = 50.2.

Figure C.14: Unsteady flow adaption, throat region, Re = 2000, XSL = 2.0, ACR =

0.75, (600 x 85) grid.
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Re -2000 , (600485) Grid , Time -50.4.

1.0 ~~VORTICITY CONTOURS: w,. 126.83, w. = -98.71

R .6,= *&I,

-2
.0

-2.0 -1.1 -0.2 0.7 1.6 2.5 3.4 4.3 5.2 6.1 7
x

Grid Skip =2
1.0

R 8.8

.4
.2
.0 ________

-2,0 -1.1 -02 0.7 1.6 2.5 3.4 4.3 5.2 6.1 7.0
IC

INSTANTANEOUS STREAM FUNCTION CONTOURS: Oý - 0.4722

.4

0
-2.0 -.11 -02 0.7 1.6 2.5 3.4 4.2 52 6.1 7.0

IC

C.? = 50.4.

Re -2000 , (600485) Grid . 'rme.=s0.a

1.0 ~~VORTIC(TY CONTOURS: ,,-16M-..45

R .6
.4

.01
-2.0 -1.1 -0.2 0.7 16 2.3 3.4 4.3 52 81 7T0

1.0 Grd skip = 2

R .63

2
.0%

.2.0 *1.1 -0.2 0.7 1.6 2.5 3.4 4.3 S.2 a.1 7.0
x

1.0 INSTANTANEOUS STREAM FUNCTION CONTOURS: #I 0.4706

R A.6mam
.4

-2.0 -1.1 -012 0.7 1.6 2.5 3.4 4.3 5.2 6.1 7.0

d. 506

Figure C.14: Continued.
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Re .- 2000 . (600x85) Grid , TimO-e 50.8

VORTICITY CONTOURS: t = 126.44. , -78.50
1.0

.4

2
.0

-2.0 -1.1 -0.2 0.7 1.8 2,5 3.4 4.3 52 6.1 70
x

1.0 Grid Skip 2
a

.4
.2
.0

-2.0 -1.1 -0.2 0.7 1.6 2.5 3.4 4.3 5.2 6.1 70
x

t.o INSTANTANEOUS STREAM FUNCTION CONTOURS: 0.. = 046523

.00
-4

-2.0 -1.1 -0.2 0.7 1.6 2.5 3.4 4.3 5.2 6.1 70
X

e. =-50.8.

Re-2000 , (600x85) Grid , Tn =51.0

1.0 VORTICITY CONTOURS: •, - 126.27, -66.59

.2
R .,o

.0
-2.0 -1.1 -0-2 0.7 1.6 2.5 3.4 4.3 5.2 6.1 7.0

x

Grid SkIp - 2

R .8

.4

.2

.0
-2.0 -1.1 -0.2 0.7 I.6 2.5 3.4 4.3 52 6.1 7.0

x

1.0 INSTANTANEOUS STREAM FUNCTION CONTOURS: .0.43

.12
R i0

.0
-2.0 -1.1 -0.2 0.7 1.6 2.s 3.4 4.3 52 6.1 7.0

x

f.? a51.0.

Figure C.14: Continued.
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Re 2000 .(600x86) Grid Tirra 51.2

La VORTICITY CONTOURS: -128.52, -W-8.34

Rt .6

0

x

1'0 GrddSki -2

A .6
.4
-2

-2.0 -1.1 -0.2 0.7 1.6 2.5 3.4 4. 52 &.1
x

1.0INSTANTANEOUS STREAM FUNCT10N CONTOURS: e~=0.4208

Aca.,
.4

.01
-2.0 *1.1 -0,2 0.7 1.8 2.5 1.4 4.3 5.2 6.1 7.0

x

g. - 51.2.

Figure C.14: Continued.

Re - 2000 , (600x85) Grid . Time -50.0

VORTICIlY CONTOURS: ~t 126.65, -. 8

4

.0
7.0 74 8,8 9.7 10.6 11.5 12.4 13.3 11 5.1¶ 18.0

x

Grid Skip =2

.4

.2

.0
7.0 T.9 8.8 9.7 10.6 11.5 12.4 13.3 14.2 15.1 16.0

1.0 INSTANTANEOUS STREAM FUNCTION CONTOURS: - 0.4528

R .6
.4

7.0 7.9 8,8 9.7 10.8 11.5 12.4 13.3 14.2 15.1 16,0

x

a. .=50.0.

Figure C.15: Unsteady flow adaption, downstream region, Re = 2000, '(SL = 2.0,

ACR = 0.75, (600 x 85) grid.
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Re -2000 . (600x85) Grid Taim 50.2

VORTICITY CONTOURS: =12&33, w,- -93.47

.0

7.07.
.0 79 8.8 917 10.6 11.5 12.4 13.3 14.2 15.1 180

x

1.0 Grid Skip =2

.0 _

7.0 7-9 8.8 9.7 10.8 1 1.5 12.4 13.3 14.2 15.1 16.0
x

1.0 INSTANTANEOUS STREAM FUNCTION CONTOURS: 0-- 0.4817

.2
.0L

70O 7.9 8.8 9.7 1068 11.5 12.4 t2.3 14.2 15.1 16.0

x

b. -cr 50.2.

Re - 2000 .(600x85) Grid ,Time 50.4

1.0 VORTICITY CONTOURS: w,. 126.83, =-98.71

4

0
7.0 7.9 8.8 9.7 10.6 115 12.4 12.3 142 15.1 16.0

x

1.8ri 
ki

R .6
4
.2
.0

7.0 7.9 8.8 9.7 10.8 11.5 12.4 13.3 14.2 15.1 160
x

1.0 INSTANTANEOUS STREAM FUNCTION CONTOURS: 0.. - 0.4722
.8

4

.0

7.0 7.9 8.8 9.7 10.6 11.5 12.4 13,3 14.2 15.? 16.a
x

c.? T 50.4.

Figure C.15: Continued.
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Re - 2000 (WM"8) Grid Tkm l50.6

1.0 voR1ncrry CONTOURS: -126.06, -94.55

.4

.2
-0

7.0 7.9 8.8 9.7 10.0 11.5 12.4 12.3 142 15.1 16.0

x

1.0 INSTANTANEOUS STREAM FUNCTION CONTOURS: -0.470W

R .6.
.4

.2ý

.0
7.0 7.9 8.8 9.7 10.8 11.5 12.4 13.2 14,2 15.1 16.0

x

d -c -50.6.

Re - 2000 , (600485) Grid , Time -50.8

to VORTiCITY CONTOURS: w,. 126.44. wA -78.50

.0
7.0 T9 88 9.7 10.0 115 12.4 13.3 142 15.1 ISO

R a
A6

-2
0

7-0 7.9 6.0 9.7 10. 115 t2.4 13.3 142 151 160

x

1.0INSTANTANEOUS STREAM FUNCTION CONTOURS: *0.4523

R 2
0
7.0 79 0.8 9.7 10.6 115 12.4 13.3 142 151 160

x

e T 50.8.

Figure C.15: Continued.

125



,4

Re - 2000 , (600x86) Grid , Tlne - 51.0

1.0 VORTICITY CONTOURS: '.,, - 126.27, -6 -8.59

R .8a1.0

7.0 7.9 8.6 9.7 10.6 11.5 12.4 13.3 142 151 1 6.0
x

Grid Skipo
1.0
.8

R .4
.4
2

7TO 7.2 8A 8.7 10.6 11.5 12.4 13.3 14.2 15.1 16.0

x

INSTANTANEOUS STREAM FUNCTION CONTOURS: o, - 0.43061.0

R .8

.4

.2
0

7.O 7. a.a 9.7 10. 11.5 12.4 13.' 14.2 15.1 18.0
x

f. - 51.0.

Re - 2000 . (600x85) Grid , Time = 51.2

1.0 VORT1CITY CONTOURS: w, - 126.52 = -60.34

R 6

.2

70 7.9 .8 97 10 115 12.4 13.3 142 15.1 1650

Grid Skip 2

R .5
4

.2

0
70 7.9 8.8 9.7 10.6 11.5 12.4 13.3 14.2 15A1 160

x

1.0 INSTANTANEOUS STREAM FUNCTION CONTOURS: , = 0.4208

R .6
4

.0

7,0 7.9 8.8 9.7 10,6 115 12.4 13.3 14.2 15.1 180

x

g. - - 51.2.

Figure C.15: Continued.
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Re*2000 , (60OX85) Grid , Titne- 84.0
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Figure C.16: Flow and adapted grid at outlet. XSL = 2.0, ACR 0.75, (600 x 85)
grid, Re = 2000, time = 84.0.
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Figure C.17: Flow and adapted grid at outlet. XSL =2.0, ACR =0.75, (600 x 85)
grid, Re = 10000, time =241.2.
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